cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A114229 Smallest number m such that A114228(m) = n.

Original entry on oeis.org

2, 3, 34, 10, 47, 20, 46, 52, 221, 462, 92, 77, 619, 94, 319, 2176, 263, 154, 700, 1980, 1336, 928, 2477, 3243, 428, 461, 2146, 4224, 1456, 2735, 3373, 5319, 6439, 4522, 4508, 4516, 11073, 1814, 9940, 10746, 17523, 6680, 16409, 10023, 16107, 14289
Offset: 1

Views

Author

Lei Zhou, Nov 18 2005

Keywords

Comments

Sequence is defined for all n>=1.
A114228(a(n)) = n and A114228(m) <> n for m < a(n).

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndex); import Data.Maybe (fromJust)
    a114229 = (+ 2) . fromJust . (`elemIndex` (map a114228 [2..]))
    -- Reinhard Zumkeller, Oct 31 2013
  • Mathematica
    Do[ns[k] = 0, {k, 1, 2000}]; n2 = 0; n1 = 1; While[n2 <= 200, n1++; p1 = Prime[n1]; n2 = 1; p2 = 2; While[cp = p1 + 2*p2; ! PrimeQ[cp], n2++; p2 = Prime[n2]]; If[ns[n2] == 0, ns[n2] = n1; Print[n2, "[", n1, "]"]]]; Table[ns[k], {k, 1, n2}]

Extensions

Edited definition to conform to OEIS style. - Reinhard Zumkeller, Oct 31 2013

A114227 Smallest odd prime q such that 2q + prime(n) is prime.

Original entry on oeis.org

3, 3, 3, 3, 3, 5, 3, 7, 3, 3, 3, 5, 3, 3, 7, 3, 3, 13, 3, 5, 3, 7, 3, 3, 3, 3, 11, 7, 5, 3, 7, 5, 7, 3, 3, 5, 3, 3, 7, 5, 3, 3, 7, 17, 11, 3, 3, 5, 3, 19, 5, 3, 3, 3, 7, 3, 3, 13, 5, 7, 3, 3, 17, 7, 3, 5, 3, 5, 3, 7, 3, 3, 5, 3, 37, 11, 19, 5, 7, 5, 13, 3, 5, 3, 7, 3, 3, 23, 37, 31, 11, 43, 5, 3, 7, 13, 17
Offset: 3

Views

Author

Lei Zhou, Nov 18 2005

Keywords

Crossrefs

Programs

  • Haskell
    a114227 n = head [p | p <- tail a000040_list,
                          a010051' (2 * p + a000040 n) == 1]
    -- Reinhard Zumkeller, Oct 29 2013
  • Mathematica
    Table[p1 = Prime[n1]; n2 = 2; p2 = 3; While[ cp = p1 + 2*p2; ! PrimeQ[cp], n2++; p2 = Prime[n2]]; p2, {n1, 3, 202}]

A114231 Smallest number m such that prime(n) + 2*prime(n-m) is a prime.

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 1, 1, 2, 1, 3, 2, 4, 4, 2, 9, 1, 3, 2, 4, 5, 1, 5, 2, 8, 3, 1, 3, 1, 1, 3, 8, 2, 6, 1, 4, 3, 8, 2, 7, 7, 14, 9, 7, 1, 4, 3, 1, 1, 1, 5, 1, 1, 2, 8, 4, 1, 8, 2, 4, 1, 8, 3, 9, 5, 3, 2, 1, 4, 1, 4, 4, 2, 3, 2, 4, 2, 12, 3, 1, 1, 3, 12, 2, 1, 2, 5, 5, 3, 3, 10, 4, 19, 1, 6, 4, 8, 7, 2, 5, 9, 2, 3
Offset: 2

Views

Author

Lei Zhou, Nov 18 2005

Keywords

Examples

			n=2, prime(2)+2*prime(2-1)=3+2*2=7 is prime, so a(2)=1;
n=3, prime(3)+2*prime(3-1)=5+2*3=11 is prime, so a(3)=1;
...
n=17, prime(17)+2*prime(17-9)=59+2*19=97 is prime, so a(17)=9.
		

Crossrefs

Programs

  • Haskell
    a114231 n = head [m | m <- [1..],
                          a010051 (a000040 n + 2 * a000040 (n - m)) == 1]
    -- Reinhard Zumkeller, Oct 31 2013
  • Mathematica
    Table[p1 = Prime[n1]; n2 = n1 - 1; p2 = Prime[n2]; While[cp = p1 + 2*p2; ! PrimeQ[cp], n2--; If[n2 == 0, Print[n1]]; p2 = Prime[n2]]; n1 - n2, {n1, 2, 201}]

Extensions

Edited definition to conform to OEIS style. - Reinhard Zumkeller, Oct 31 2013

A114233 Smallest number m such that 2*prime(n) + prime(m) is a prime.

Original entry on oeis.org

2, 2, 4, 2, 2, 2, 4, 2, 3, 3, 4, 2, 2, 2, 6, 3, 2, 4, 2, 3, 4, 2, 2, 11, 3, 6, 3, 2, 2, 4, 2, 2, 6, 3, 2, 3, 2, 2, 11, 3, 4, 2, 2, 2, 5, 2, 2, 2, 6, 6, 3, 4, 4, 11, 2, 3, 2, 4, 2, 4, 2, 8, 3, 4, 5, 2, 4, 2, 2, 14, 3, 3, 2, 2, 8, 2, 4, 2, 8, 5, 8, 5, 2, 14, 6, 3, 4, 2, 2, 6, 2, 11, 5, 2, 2, 4, 2, 3, 2, 2, 2, 6, 5
Offset: 3

Views

Author

Lei Zhou, Nov 20 2005

Keywords

Examples

			n=3: 2*prime(3)+prime(2)=2*5+3=13 is prime, so a(3)=2;
n=4: 2*prime(4)+prime(2)=2*7+3=17 is prime, so a(4)=2;
n=5: 2*prime(5)+prime(2)=2*11+3=25 is not prime
...
2*prime(5)+prime(4)=2*11+7=29 is prime, so a(5)=4.
		

Crossrefs

Programs

  • Haskell
    a114233 n = head [m | m <- [1 .. n],
                          a010051' (2 * a000040 n + a000040 m) == 1]
    -- Reinhard Zumkeller, Oct 31 2013
  • Mathematica
    Table[p1 = Prime[n1]; n2 = 1; p2 = Prime[n2]; While[cp = 2*p1 + p2; ! PrimeQ[cp], n2++; If[n2 >= n1, Print[n1]]; p2 = Prime[n2]]; n2, { n1, 3, 202}]
    snm[n_]:=Module[{m=1,p=2Prime[n]},While[!PrimeQ[p+Prime[m]],m++];m]; Array[ snm,110,3] (* Harvey P. Dale, Sep 30 2017 *)

Extensions

Edited definition to conform to OEIS style. - Reinhard Zumkeller, Oct 31 2013

A114236 Smallest number m such that 2*prime(n)+prime(n-m) is a prime.

Original entry on oeis.org

1, 1, 1, 1, 1, 5, 3, 4, 4, 2, 2, 1, 1, 2, 6, 1, 2, 8, 5, 2, 2, 2, 1, 4, 1, 1, 5, 11, 1, 1, 2, 2, 8, 3, 2, 5, 2, 2, 3, 1, 1, 1, 1, 5, 2, 3, 1, 10, 4, 4, 4, 1, 5, 12, 9, 1, 2, 1, 5, 3, 1, 1, 1, 1, 12, 2, 1, 6, 6, 5, 1, 5, 3, 8, 3, 6, 4, 4, 6, 5, 1, 1, 4, 2, 5, 11, 4, 11, 6, 12, 1, 6, 1, 3, 7, 10, 1, 9, 5, 3, 3, 9
Offset: 3

Views

Author

Lei Zhou, Nov 20 2005

Keywords

Examples

			n=3: 2*prime(3)+prime(3-1)=2*5+3=13 is prime, so a(3)=1;
n=4: 2*prime(4)+prime(4-1)=2*7+5=19 is prime, so a(4)=1;
...
n=8: 2*prime(8)+prime(8-5)=2*19+5=43 is prime, so a(8)=5;
		

Crossrefs

Programs

  • Haskell
    a114236 n = head [m | m <- [1..],
                          a010051 (2 * a000040 n + a000040 (n - m)) == 1]
    -- Reinhard Zumkeller, Oct 31 2013
  • Mathematica
    Table[p1 = Prime[n1]; n2 = 1; p2 = Prime[n1 - n2]; While[cp = 2*p1 + p2; ! PrimeQ[cp], n2++; If[n2 >= n1, Print[n1]]; p2 = Prime[n1 - n2]]; n2, {n1, 3, 202}]

Extensions

Edited definition to conform to OEIS style. - Reinhard Zumkeller, Oct 31 2013

A114263 Smallest number m such that prime(n) + 2*prime(n+m) is a prime.

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 5, 3, 2, 2, 3, 1, 1, 4, 5, 1, 5, 4, 2, 2, 2, 2, 1, 3, 1, 1, 8, 4, 1, 1, 2, 3, 9, 2, 5, 2, 2, 9, 6, 1, 1, 1, 1, 2, 3, 4, 1, 4, 5, 8, 11, 1, 11, 4, 5, 1, 4, 1, 5, 8, 1, 1, 1, 1, 2, 5, 1, 5, 9, 2, 1, 10, 3, 4, 4, 5, 5, 6, 7, 4, 1, 1, 2, 4, 13, 6, 6, 6, 7, 9, 1, 3, 1, 7, 3, 9, 1, 3, 3, 6, 3, 8, 2
Offset: 2

Views

Author

Lei Zhou, Nov 20 2005

Keywords

Examples

			n=2: prime(2)+2*prime(2+1)=3+2*5=13 is prime, so a(2)=1;
n=3: prime(3)+2*prime(3+1)=5+2*7=19 is prime, so a(2)=1;
...
n=7: prime(7)+2*prime(7+1)=17+2*19=55 is not prime
...
prime(7)+2*prime(7+4)=17+2*31=79 is prime, so a(7)=4;
		

Crossrefs

Programs

  • Haskell
    a114263 n = head [m | m <- [1..n],
                          a010051 (a000040 n + 2 * a000040 (n + m)) == 1]
    -- Reinhard Zumkeller, Oct 31 2013
  • Mathematica
    Table[p1 = Prime[n1]; n2 = 1; p2 = Prime[n1 + n2]; While[cp = p1 + 2* p2; ! PrimeQ[cp], n2++; p2 = Prime[n1 + n2]]; n2, {n1, 2, 201}]

Extensions

Edited definition to conform to OEIS style. - Reinhard Zumkeller, Oct 31 2013

A114266 a(n) is the minimal number m that makes 2*prime(n)+prime(n+m) a prime.

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 1, 1, 3, 1, 2, 4, 6, 2, 6, 2, 1, 2, 5, 5, 2, 1, 2, 3, 5, 3, 1, 6, 1, 1, 8, 2, 4, 7, 1, 9, 3, 2, 9, 7, 5, 10, 4, 5, 1, 5, 5, 1, 1, 1, 8, 1, 1, 4, 6, 2, 1, 2, 12, 10, 1, 11, 8, 3, 11, 2, 2, 1, 4, 1, 7, 2, 3, 2, 11, 2, 3, 3, 3, 1, 1, 5, 2, 5, 1, 7, 3, 3, 4, 6, 4, 7, 4, 1, 9, 5, 3, 2, 4, 7, 2, 9, 2
Offset: 1

Views

Author

Lei Zhou, Nov 20 2005

Keywords

Examples

			n=1: 2*prime(1)+prime(1+1)=2*2+3=7 is prime, so a(1)=1;
n=2: 2*prime(2)+prime(2+1)=2*3+5=11 is prime, so a(2)=1;
...
n=4: 2*prime(4)+prime(4+1)=2*7+11=25 is not prime
...
2*prime(4)+prime(4+3)=2*7+17=31 is prime, so a(4)=3.
		

Crossrefs

Programs

  • Haskell
    a114266 n = head [m | m <- [1..],
                          a010051 (2 * a000040 n + a000040 (n + m)) == 1]
    -- Reinhard Zumkeller, Oct 29 2013
  • Mathematica
    Table[p1 = Prime[n1]; n2 = 1; p2 = Prime[n1 + n2]; While[cp = 2*p1 + p2; ! PrimeQ[cp], n2++; p2 = Prime[n1 + n2]]; n2, {n1, 1, 200}]
    mnm[n_]:=Module[{m=1,p=2Prime[n]},While[!PrimeQ[p+Prime[n+m]],m++];m]; Array[mnm,110] (* Harvey P. Dale, Aug 05 2017 *)

Extensions

Edited definition to conform to OEIS style. - N. J. A. Sloane, Jan 08 2011
Showing 1-7 of 7 results.