cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A107891 a(n) = (n+1)*(n+2)^2*(n+3)^2*(n+4)*(3n^2 + 15n + 20)/2880.

Original entry on oeis.org

1, 19, 155, 805, 3136, 9996, 27468, 67320, 150645, 313027, 611611, 1134497, 2012920, 3436720, 5673648, 9093096, 14194881, 21643755, 32310355, 47319349, 68105576, 96479020, 134699500, 185562000, 252493605, 339663051, 452103939
Offset: 0

Views

Author

Emeric Deutsch, Jun 12 2005

Keywords

Comments

Kekulé numbers for certain benzenoids.
Partial sums of A114239. First differences of A047819. - Peter Bala, Sep 21 2007

References

  • S. J. Cyvin and I. Gutman, KekulĂ© structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see pp. 167, 187 and p. 105 eq. (iii) for k=2 and m=5).

Crossrefs

Programs

  • Maple
    a:=n->(1/2880)*(n+1)*(n+2)^2*(n+3)^2*(n+4)*(3*n^2+15*n+20): seq(a(n),n=0..32);
  • Mathematica
    Table[((1+n) (2+n)^2 (3+n)^2 (4+n) (20+3 n (5+n)))/2880,{n,0,40}] (* or *) LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{1,19,155,805,3136,9996,27468,67320,150645},40] (* Harvey P. Dale, Dec 10 2021 *)

Formula

a(n-2) = (1/8) * Sum_{1 <= x_1, x_2 <= n} (x_1*x_2)^2*(det V(x_1,x_2))^2 = 1/8*sum {1 <= i,j <= n} (i*j*(i-j))^2, where V(x_1,x_2) is the Vandermonde matrix of order 2. - Peter Bala, Sep 21 2007
G.f.: (1+10*x+20*x^2+10*x^3+x^4)/(1-x)^9. - Colin Barker, Feb 08 2012
a(n) = (A000330(n+2)*A000538(n+2) - (A000537(n+2))^2)/4. - J. M. Bergot, Sep 17 2013
Sum_{n>=0} 1/a(n) = 17095/4 - 240*Pi^2 - 162*sqrt(15)*Pi*tanh(sqrt(5/3)*Pi/2). - Amiram Eldar, May 29 2022

A195166 Numbers expressible as 2^a - 2^b, with 0 <= b < a, such that n^a - n^b is divisible by 2^a - 2^b for all n.

Original entry on oeis.org

1, 2, 6, 12, 30, 24, 60, 120, 252, 240, 504, 16380, 32760, 65520
Offset: 1

Views

Author

Michel Marcus, Dec 21 2012

Keywords

Comments

1 = 2^1 - 2^0. (n^1 - n^0)/1 : A000027
2 = 2^2 - 2^1. (n^2 - n^1)/2 : A000217
6 = 2^3 - 2^1. (n^3 - n^1)/6 : A000292
12 = 2^4 - 2^2. (n^4 - n^2)/12 : A002415
30 = 2^5 - 2^1. (n^5 - n^1)/30 : A033455
24 = 2^5 - 2^3. (n^5 - n^3)/24 : A006414
60 = 2^6 - 2^2. (n^6 - n^2)/60 : A213547
120 = 2^7 - 2^3. (n^7 - n^3)/120 : A114239
252 = 2^8 - 2^2. (n^8 - n^2)/252 :
240 = 2^8 - 2^4. (n^8 - n^4)/240 : A078876
504 = 2^9 - 2^3. (n^9 - n^3)/504 :
16380 = 2^14 - 2^2. (n^14 - n^2)/16380 :
32760 = 2^15 - 2^3. (n^15 - n^3)/32760 :
65520 = 2^16 - 2^4. (n^16 - n^4)/65520 :
Comment from Tomohiro Yamada, Oct 05 2022: (Start)
"The Mod Set Stanford University" and Carl Pomerance independently noted that the completeness of this sequence follows from a result of Schinzel on primitive prime factors of sequences a^n - b^n in the remark to a problem of Harry Ruderman asking whether if 2^a - 2^b divides 3^a - 3^b, then 2^a - 2^b belongs to this sequence.
The Mod Set verified that if a > b, 2^a - 2^b divides 3^a - 3^b, but 2^a - 2^b does not belong to this sequence, then a - b > 1900. Ram Murty and Kumar Murty proved that there are only finitely many natural numbers a, b such that 2^a - 2^b divides 3^a - 3^b.
Qi Sun and Ming Zhi Zhang also showed that if a > b and n^a - n^b is divisible by 2^a - 2^b for all n, then 2^a - 2^b belongs to this sequence. (End)

Examples

			a(3) = 6 belongs to this sequence since (n^3 - n)/6 = C(n+1, 3) = A000292(n-1).
		
Showing 1-2 of 2 results.