A279557 Number of length n inversion sequences avoiding the patterns 110, 120, and 021.
1, 1, 2, 6, 20, 68, 233, 805, 2807, 9879, 35073, 125513, 452389, 1641029, 5986994, 21954974, 80884424, 299233544, 1111219334, 4140813374, 15478839554, 58028869154, 218123355524, 821908275548, 3104046382352, 11747506651600, 44546351423300, 169227201341652
Offset: 0
Keywords
Examples
The length 4 inversion sequences avoiding (110, 120, 021) are 0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0022, 0023, 0100, 0101, 0102, 0103, 0111, 0112, 0113, 0122, 0123.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1668
- Megan A. Martinez, Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv:1609.08106 [math.CO], 2016.
- Murray Tannock, Equivalence classes of mesh patterns with a dominating pattern, MSc Thesis, Reykjavik Univ., May 2016.
Crossrefs
Programs
-
Maple
a:= proc(n) option remember; `if`(n<3, n!, ((5*n^2-6*n-2)*a(n-1)-(4*n-2)*(n-1)*a(n-2))/(n^2-4)) end: seq(a(n), n=0..30); # Alois P. Heinz, Mar 11 2017
-
Mathematica
a[n_] := 1 + Sum[(k - t - 1) (k - t)/(n - t + 1)* Binomial[2 n - k - t + 1, n - k + 1], {t, n - 1}, {k, t + 2, n + 1}]; Array[a, 28, 0] (* Robert G. Wilson v, Feb 25 2017 *)
Formula
a(n) = 1 + Sum_{t=1..n-1} Sum_{k=t+2..n+1} (k-t-1)*(k-t)/(n-t+1) * binomial(2n-k-t+1,n-k+1).
Conjecture: a(n) = C_{n+1}-Sum_{i=1..n} C_i where C_i is the i-th Catalan number, binomial(2i,i)/(i+1).
Assuming the conjecture a(n) ~ (64/3)*4^n/((4*n+7)^(3/2)*sqrt(Pi)). - Peter Luschny, Feb 24 2017
From Alois P. Heinz, Mar 11 2017: (Start)
a(n) = 1 + A114277(n-2) for n>1.
G.f.: (sqrt(1-4*x)+2*x-1)*(2*x-1)/(2*(1-x)*x^2). (End)
D-finite with recurrence: (n+2)*a(n) +(-7*n-4)*a(n-1) +2*(7*n-5)*a(n-2) +4*(-2*n+3)*a(n-3)=0. - R. J. Mathar, Feb 21 2020
Extensions
a(10)-a(12) from Alois P. Heinz, Feb 24 2017
a(13) onward Robert G. Wilson v, Feb 25 2017
Comments