cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114495 Number of returns to the x-axis in all hill-free Dyck paths of semilength n (a Dyck path is said to be hill-free if it has no peaks at level 1).

Original entry on oeis.org

0, 1, 2, 7, 22, 73, 246, 844, 2936, 10334, 36736, 131709, 475714, 1729345, 6322534, 23232616, 85757008, 317839438, 1182341740, 4412949358, 16521076012, 62024023306, 233451103612, 880764587512, 3330234867792, 12617475113968
Offset: 1

Views

Author

Emeric Deutsch, Dec 01 2005

Keywords

Comments

Row sums of A114494.
Self-convolution of A000958. - Sergio Falcon, Oct 28 2008
Removing the initial zeros and setting both offsets to zero, this here is the Catalan transform of A006918. - R. J. Mathar, Jun 29 2009

Examples

			a(4) = 7 because in the six hill-free Dyck paths of semilength 4, namely
UUD(D)UUD(D), UUDUDUD(D), UUDUUDD(D), UUUDDUD(D), UUUDUDD(D) and UUUUDDD(D), we have altogether 7 returns to the x-axis (shown between parentheses).
		

Crossrefs

Cf. A114494.

Programs

  • Maple
    a:=n->sum(k^2*binomial(2*n-2*k,n-2*k)/(n-k),k=1..floor(n/2)): seq(a(n),n=1..30);
    # second Maple program:
    a:= proc(n) option remember; `if`(n<3, n*(n-1)/2,
          ((105*n^3-286*n^2+123*n+10)*a(n-1)
            +2*(n-1)*(2*n-1)*(15*n+2)*a(n-2))/
          (2*(n-2)*(n+2)*(15*n-13)))
        end:
    seq(a(n), n=1..30);  # Alois P. Heinz, Feb 08 2014
  • Mathematica
    Rest[CoefficientList[Series[(1-Sqrt[1-4*x])^2/(1+Sqrt[1-4*x]+2*x)^2, {x, 0, 20}], x]] (* Vaclav Kotesovec, Mar 20 2014 *)
  • PARI
    for(n=1,25, print1(sum(k=1,floor(n/2), k^2*binomial(2*n-2*k, n-2*k)/(n-k)), ", ")) \\ G. C. Greubel, Jan 31 2017

Formula

a(n) = Sum_{k=1..floor(n/2)} k^2*binomial(2*n-2*k, n-2*k)/(n-k).
G.f.: (1 - sqrt(1-4*x))^2/(1 + sqrt(1-4*x) + 2*x)^2.
a(n) ~ 5*4^(n+1)/(27*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 20 2014
D-finite with recurrence 2*(n+2)*a(n) +(-7*n-1)*a(n-1) +2*(-3*n-1)*a(n-2) +(7*n-27)*a(n-3) +2*(2*n-5)*a(n-4)=0. - R. J. Mathar, Jul 26 2022