cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114533 Permanent of the n X n matrix with numbers prime(1),prime(2),...,prime(n^2) in order across rows.

Original entry on oeis.org

1, 2, 29, 3746, 1919534, 2514903732, 6571874957648, 30662862975835376, 228731722381012564816, 2641049525155781555257440, 43818773386947889568479502592, 1014966115357067575070490776083200, 31412851866841234377483875199638978304
Offset: 0

Views

Author

Simone Severini, Feb 15 2006

Keywords

Comments

Previous name was : "a(n) = permanent of the n X n matrix M defined as follows: if we concatenate the rows of M to form a vector v of length n^2, v_i is the i-th prime number".

Crossrefs

Programs

  • Maple
    with(LinearAlgebra):
    a:= n->`if`(n=0, 1, Permanent(Matrix(n, (i, j)->ithprime((i-1)*n+j)))):
    seq(a(n), n=0..12);  # Alois P. Heinz, Dec 23 2013
  • Mathematica
    a[n_] := Permanent[Table[Prime[(i-1)*n+j], {i, 1, n}, {j, 1, n}]]; a[0]=1; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 12}] (* Jean-François Alcover, Jan 07 2016, adapted from Maple *)
    Join[{1},Table[Permanent[Partition[Prime[Range[n^2]],n]],{n,15}]] (* Harvey P. Dale, Aug 03 2019 *)
  • PARI
    permRWN(a)=n=matsize(a)[1]; if(n==1,return(a[1,1])); n1=n-1; sg=1; m=1; nc=0; in=vector(n); x=in; for(i=1,n,x[i]=a[i,n]-sum(j=1,n,a[i,j])/2); p=prod(i=1,n,x[i]); while(m,sg=-sg; j=1; if((nc%2)!=0,j++; while(in[j-1]==0,j++)); in[j]=1-in[j]; z=2*in[j]-1; nc+=z; m=nc!=in[n1]; for(i=1,n,x[i]+=z*a[i,j]); p+=sg*prod(i=1,n,x[i])); return(2*(2*(n%2)-1)*p)
    for(n=1,19,a=matrix(n,n,i,j,prime((i-1)*n+j)); print1(permRWN(a)", ")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), May 11 2007
    
  • PARI
    permRWNb(a)=n=matsize(a)[1];if(n==1,return(a[1,1]));sg=1;in=vectorv(n);x=in;x=a[,n]-sum(j=1,n,a[,j])/2;p=prod(i=1,n,x[i]);for(k=1,2^(n-1)-1,sg=-sg;j=valuation(k,2)+1;z=1-2*in[j];in[j]+=z;x+=z*a[,j];p+=prod(i=1,n,x[i],sg));return(2*(2*(n%2)-1)*p)
    for(n=1,23,a=matrix(n,n,i,j,prime((i-1)*n+j));print1(permRWNb(a)",")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), May 15 2007
    
  • PARI
    {a(n) = matpermanent(matrix(n, n, i, j, prime((i-1)*n+j)))}
    for(n=0, 25, print1(a(n), ", ")) \\ Vaclav Kotesovec, Aug 13 2021

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), May 11 2007
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), May 15 2007
New name from Michel Marcus, Nov 30 2013
a(0) inserted and a(12) by Alois P. Heinz, Dec 23 2013