cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114639 Number of partitions of n such that the set of parts and the set of multiplicities of parts are disjoint.

Original entry on oeis.org

1, 0, 2, 2, 2, 3, 5, 4, 7, 7, 13, 16, 19, 23, 33, 34, 44, 58, 63, 80, 101, 112, 139, 171, 196, 234, 288, 328, 394, 478, 545, 658, 777, 881, 1050, 1236, 1414, 1666, 1936, 2216, 2592, 3018, 3428, 3992, 4604, 5243, 6069, 6986, 7951, 9139, 10447, 11892, 13625
Offset: 0

Views

Author

Vladeta Jovovic, Feb 18 2006

Keywords

Comments

The Heinz numbers of these partitions are given by A325131. - Gus Wiseman, Apr 02 2019

Examples

			From _Gus Wiseman_, Apr 02 2019: (Start)
The a(2) = 2 through a(9) = 7 partitions:
  (2)   (3)    (4)     (5)      (6)       (7)        (8)         (9)
  (11)  (111)  (1111)  (32)     (33)      (43)       (44)        (54)
                       (11111)  (42)      (52)       (53)        (63)
                                (222)     (1111111)  (62)        (72)
                                (111111)             (2222)      (432)
                                                     (3311)      (222111)
                                                     (11111111)  (111111111)
(End)
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p, m) option remember; `if`(n=0, 1,
          `if`(i<1, 0, b(n, i-1, p, select(x-> x x<=n-i*j, p union {i}),
             select(x-> x b(n$2, {}$2):
    seq(a(n), n=0..40);  # Alois P. Heinz, Aug 09 2016
  • Mathematica
    b[n_, i_, p_, m_] := b[n, i, p, m] = If[n == 0, 1, If[i<1, 0, b[n, i-1, p, Select[m, #Jean-François Alcover, Feb 05 2017, after Alois P. Heinz *)
    Table[Length[Select[IntegerPartitions[n],Intersection[#,Length/@Split[#]]=={}&]],{n,0,30}] (* Gus Wiseman, Apr 02 2019 *)

Extensions

a(0)=1 prepended and more terms from Alois P. Heinz, Aug 09 2016