A114639 Number of partitions of n such that the set of parts and the set of multiplicities of parts are disjoint.
1, 0, 2, 2, 2, 3, 5, 4, 7, 7, 13, 16, 19, 23, 33, 34, 44, 58, 63, 80, 101, 112, 139, 171, 196, 234, 288, 328, 394, 478, 545, 658, 777, 881, 1050, 1236, 1414, 1666, 1936, 2216, 2592, 3018, 3428, 3992, 4604, 5243, 6069, 6986, 7951, 9139, 10447, 11892, 13625
Offset: 0
Keywords
Examples
From _Gus Wiseman_, Apr 02 2019: (Start) The a(2) = 2 through a(9) = 7 partitions: (2) (3) (4) (5) (6) (7) (8) (9) (11) (111) (1111) (32) (33) (43) (44) (54) (11111) (42) (52) (53) (63) (222) (1111111) (62) (72) (111111) (2222) (432) (3311) (222111) (11111111) (111111111) (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..100
Crossrefs
Programs
-
Maple
b:= proc(n, i, p, m) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, p, select(x-> x x<=n-i*j, p union {i}), select(x-> x b(n$2, {}$2): seq(a(n), n=0..40); # Alois P. Heinz, Aug 09 2016
-
Mathematica
b[n_, i_, p_, m_] := b[n, i, p, m] = If[n == 0, 1, If[i<1, 0, b[n, i-1, p, Select[m, #Jean-François Alcover, Feb 05 2017, after Alois P. Heinz *) Table[Length[Select[IntegerPartitions[n],Intersection[#,Length/@Split[#]]=={}&]],{n,0,30}] (* Gus Wiseman, Apr 02 2019 *)
Extensions
a(0)=1 prepended and more terms from Alois P. Heinz, Aug 09 2016
Comments