cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A327476 Heinz numbers of integer partitions whose mean A326567/A326568 is not a part.

Original entry on oeis.org

1, 6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 82, 85, 86, 87, 88, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 106
Offset: 1

Views

Author

Gus Wiseman, Sep 13 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    6: {1,2}
   10: {1,3}
   12: {1,1,2}
   14: {1,4}
   15: {2,3}
   18: {1,2,2}
   20: {1,1,3}
   21: {2,4}
   22: {1,5}
   24: {1,1,1,2}
   26: {1,6}
   28: {1,1,4}
   33: {2,5}
   34: {1,7}
   35: {3,4}
   36: {1,1,2,2}
   38: {1,8}
   39: {2,6}
   40: {1,1,1,3}
		

Crossrefs

Complement of A327473.
The enumeration of these partitions by sum is given by A327472.
Subsets whose mean is not an element are A327471.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],!MemberQ[primeMS[#],Mean[primeMS[#]]]&]

A327472 Number of integer partitions of n not containing their mean.

Original entry on oeis.org

1, 0, 0, 1, 2, 5, 6, 13, 16, 25, 34, 54, 56, 99, 121, 154, 201, 295, 324, 488, 541, 725, 957, 1253, 1292, 1892, 2356, 2813, 3378, 4563, 4838, 6840, 7686, 9600, 12076, 14180, 15445, 21635, 25627, 29790, 33309, 44581, 48486, 63259, 70699, 82102, 104553, 124752
Offset: 0

Views

Author

Gus Wiseman, Sep 13 2019

Keywords

Examples

			The a(3) = 1 through a(8) = 16 partitions not containing their mean:
  (21)  (31)   (32)    (42)     (43)      (53)
        (211)  (41)    (51)     (52)      (62)
               (221)   (411)    (61)      (71)
               (311)   (2211)   (322)     (332)
               (2111)  (3111)   (331)     (422)
                       (21111)  (421)     (431)
                                (511)     (521)
                                (2221)    (611)
                                (3211)    (3311)
                                (4111)    (5111)
                                (22111)   (22211)
                                (31111)   (32111)
                                (211111)  (41111)
                                          (221111)
                                          (311111)
                                          (2111111)
		

Crossrefs

The Heinz numbers of these partitions are A327476.
Partitions with their mean are A237984.
Subsets without their mean are A327471.
Subsets with n but without their mean are A327477.
Strict partitions without their mean are A240851.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!MemberQ[#,Mean[#]]&]],{n,0,20}]
  • Python
    from sympy.utilities.iterables import partitions
    def A327472(n): return sum(1 for s,p in partitions(n,size=True) if n%s or n//s not in p) if n else 1 # Chai Wah Wu, Sep 21 2023

A114640 Number of partitions of n such that the set of parts and the set of multiplicities of parts are equal.

Original entry on oeis.org

1, 1, 0, 0, 2, 1, 1, 0, 1, 1, 3, 2, 3, 3, 5, 0, 4, 5, 2, 3, 8, 6, 5, 10, 9, 9, 16, 14, 12, 16, 17, 10, 17, 15, 16, 19, 35, 17, 34, 37, 40, 31, 54, 36, 60, 61, 58, 63, 88, 58, 88, 87, 91, 84, 115, 93, 116, 108, 115, 130, 190, 143, 165, 214, 219, 200, 255, 240
Offset: 0

Views

Author

Vladeta Jovovic, Feb 18 2006

Keywords

Comments

The Heinz numbers of these partitions are given by A109297. - Gus Wiseman, Apr 02 2019

Examples

			From _Gus Wiseman_, Apr 02 2019: (Start)
The initial terms count the following integer partitions:
   0: ()
   1: (1)
   4: (22)
   4: (211)
   5: (221)
   6: (3111)
   8: (41111)
   9: (333)
  10: (511111)
  10: (3331)
  10: (322111)
  11: (332111)
  11: (322211)
  12: (6111111)
  12: (4221111)
  12: (33222)
  13: (33322)
  13: (333211)
  13: (332221)
  14: (71111111)
  14: (52211111)
  14: (4421111)
  14: (4222211)
  14: (333221)
(End)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Union[#]==Union[Length/@Split[#]]&]],{n,0,30}] (* Gus Wiseman, Apr 02 2019 *)

Extensions

More terms from Alois P. Heinz, Aug 09 2016

A087153 Number of partitions of n into nonsquares.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 3, 3, 5, 5, 8, 9, 13, 15, 20, 24, 30, 37, 47, 55, 71, 83, 103, 123, 151, 178, 218, 257, 310, 366, 440, 515, 617, 722, 857, 1003, 1184, 1380, 1625, 1889, 2214, 2570, 3000, 3472, 4042, 4669, 5414, 6244, 7221, 8303, 9583, 10998, 12655, 14502
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 21 2003

Keywords

Comments

Also, number of partitions of n where there are fewer than k parts equal to k for all k. - Jon Perry and Vladeta Jovovic, Aug 04 2004. E.g. a(8)=5 because we have 8=6+2=5+3=4+4=3+3+2.
Convolution of A276516 and A000041. - Vaclav Kotesovec, Dec 30 2016
From Gus Wiseman, Apr 02 2019: (Start)
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). The Heinz numbers of the integer partitions described in Perry and Jovovic's comment are given by A325128, while the Heinz numbers of the integer partitions described in the name are given by A325129. In the former case, the first 10 terms count the following integer partitions:
() (2) (3) (4) (5) (6) (7) (8) (9)
(32) (33) (43) (44) (54)
(42) (52) (53) (63)
(62) (72)
(332) (432)
while in the latter case they count the following:
() (2) (3) (22) (5) (6) (7) (8) (63)
(32) (33) (52) (53) (72)
(222) (322) (62) (333)
(332) (522)
(2222) (3222)
(End)

Examples

			n=7: 2+5 = 2+2+3 = 7: a(7)=3;
n=8: 2+6 = 2+2+2+2 = 2+3+3 = 3+5 = 8: a(8)=5;
n=9: 2+7 = 2+2+5 = 2+2+2+3 = 3+3+3 = 3+6: a(9)=5.
		

References

  • G. E. Andrews, K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004. See page 48.

Crossrefs

Programs

  • Haskell
    a087153 = p a000037_list where
       p _          0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Apr 25 2013
    
  • Maple
    g:=product((1-x^(i^2))/(1-x^i),i=1..70):gser:=series(g,x=0,60):seq(coeff(gser,x^n),n=1..53); # Emeric Deutsch, Feb 09 2006
  • Mathematica
    nn=54; CoefficientList[ Series[ Product[ Sum[x^(i*j), {j, 0, i - 1}], {i, 1, nn}], {x, 0, nn}], x] (* Robert G. Wilson v, Aug 05 2004 *)
    nmax = 100; CoefficientList[Series[Product[(1 - x^(k^2))/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 29 2016 *)
  • PARI
    first(n)=my(x='x+O('x^(n+1))); Vec(prod(m=1,sqrtint(n), (1-x^m^2)/(1-x^m))*prod(m=sqrtint(n)+1,n,1/(1-x^m))) \\ Charles R Greathouse IV, Aug 28 2016

Formula

G.f.: Product_{m>0} (1-x^(m^2))/(1-x^m). - Vladeta Jovovic, Aug 21 2003
a(n) = (1/n)*Sum_{k=1..n} (A000203(k)-A035316(k))*a(n-k), a(0)=1. - Vladeta Jovovic, Aug 21 2003
G.f.: Product_{i>=1} (Sum_{j=0..i-1} x^(i*j)). - Jon Perry, Jul 26 2004
a(n) ~ exp(Pi*sqrt(2*n/3) - 3^(1/4) * Zeta(3/2) * n^(1/4) / 2^(3/4) - 3*Zeta(3/2)^2/(32*Pi)) * sqrt(Pi) / (2^(3/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Dec 30 2016

Extensions

Zeroth term added by Franklin T. Adams-Watters, Jan 25 2010

A325131 Heinz numbers of integer partitions where the set of distinct parts is disjoint from the set of distinct multiplicities.

Original entry on oeis.org

1, 3, 4, 5, 7, 8, 11, 13, 15, 16, 17, 19, 21, 23, 25, 27, 29, 31, 32, 33, 35, 37, 39, 41, 43, 47, 49, 51, 53, 55, 57, 59, 61, 64, 65, 67, 69, 71, 73, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 100, 101, 103, 105, 107, 109, 111, 113, 115, 119, 121, 123, 127
Offset: 1

Views

Author

Gus Wiseman, Apr 01 2019

Keywords

Comments

The enumeration of these partitions by sum is given by A114639.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers where the prime indices are disjoint from the prime exponents.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   3: {2}
   4: {1,1}
   5: {3}
   7: {4}
   8: {1,1,1}
  11: {5}
  13: {6}
  15: {2,3}
  16: {1,1,1,1}
  17: {7}
  19: {8}
  21: {2,4}
  23: {9}
  25: {3,3}
  27: {2,2,2}
  29: {10}
  31: {11}
  32: {1,1,1,1,1}
  33: {2,5}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],Intersection[PrimePi/@First/@FactorInteger[#],Last/@FactorInteger[#]]=={}&]

A276429 Number of partitions of n containing no part i of multiplicity i.

Original entry on oeis.org

1, 0, 2, 2, 3, 5, 8, 9, 16, 19, 29, 36, 53, 65, 92, 115, 154, 195, 257, 318, 419, 516, 663, 821, 1039, 1277, 1606, 1963, 2441, 2978, 3675, 4454, 5469, 6603, 8043, 9688, 11732, 14066, 16963, 20260, 24310, 28953, 34586, 41047, 48857, 57802, 68528, 80862, 95534, 112388, 132391
Offset: 0

Views

Author

Emeric Deutsch, Sep 19 2016

Keywords

Comments

The Heinz numbers of these partitions are given by A325130. - Gus Wiseman, Apr 02 2019

Examples

			a(4) = 3 because we have [1,1,1,1], [1,1,2], and [4]; the partitions [1,3], [2,2] do not qualify.
From _Gus Wiseman_, Apr 02 2019: (Start)
The a(2) = 2 through a(7) = 9 partitions:
  (2)   (3)    (4)     (5)      (6)       (7)
  (11)  (111)  (211)   (32)     (33)      (43)
               (1111)  (311)    (42)      (52)
                       (2111)   (222)     (511)
                       (11111)  (411)     (3211)
                                (3111)    (4111)
                                (21111)   (31111)
                                (111111)  (211111)
                                          (1111111)
(End)
		

Crossrefs

Programs

  • Maple
    g := product(1/(1-x^i)-x^(i^2), i = 1 .. 100): gser := series(g, x = 0, 53): seq(coeff(gser, x, n), n = 0 .. 50);
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(`if`(i=j, 0, b(n-i*j, i-1)), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..60);  # Alois P. Heinz, Sep 19 2016
  • Mathematica
    b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[If[i == j, x, 1]*b[n - i*j, i - 1], {j, 0, n/i}]]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n]]; Table[T[n][[1]], {n, 0, 60}] (* Jean-François Alcover, Nov 28 2016 after Alois P. Heinz's Maple code for A276427 *)
    Table[Length[Select[IntegerPartitions[n],And@@Table[Count[#,i]!=i,{i,Union[#]}]&]],{n,0,30}] (* Gus Wiseman, Apr 02 2019 *)

Formula

a(n) = A276427(n,0).
G.f.: g(x) = Product_{i>=1} (1/(1-x^i) - x^{i^2}).

A325705 Number of integer partitions of n containing all of their distinct multiplicities.

Original entry on oeis.org

1, 1, 0, 1, 3, 2, 4, 3, 7, 8, 16, 15, 24, 28, 39, 44, 68, 80, 98, 130, 167, 200, 259, 320, 396, 497, 601, 737, 910, 1107, 1335, 1631, 1983, 2372, 2887, 3439, 4166, 4949, 5940, 7043, 8450, 9980, 11884, 13984, 16679, 19493, 23162, 27050, 31937, 37334, 43926
Offset: 0

Views

Author

Gus Wiseman, May 18 2019

Keywords

Comments

The Heinz numbers of these partitions are given by A325706.

Examples

			The partition (4,2,1,1,1,1) has distinct multiplicities {1,4}, both of which belong to the partition, so it is counted under a(10).
The a(0) = 1 through a(10) = 16 partitions:
  ()  (1)  (21)  (22)   (41)   (51)    (61)    (71)     (81)     (91)
                 (31)   (221)  (321)   (421)   (431)    (333)    (541)
                 (211)         (2211)  (3211)  (521)    (531)    (631)
                               (3111)          (3221)   (621)    (721)
                                               (4211)   (3321)   (3322)
                                               (32111)  (4221)   (3331)
                                               (41111)  (5211)   (4321)
                                                        (32211)  (5221)
                                                                 (6211)
                                                                 (32221)
                                                                 (33211)
                                                                 (42211)
                                                                 (43111)
                                                                 (322111)
                                                                 (421111)
                                                                 (511111)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],SubsetQ[Sort[#],Sort[Length/@Split[#]]]&]],{n,0,30}]

A115584 Number of partitions of n in which each part k occurs more than k times.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 1, 3, 2, 4, 3, 6, 4, 7, 7, 8, 8, 12, 9, 15, 14, 17, 18, 24, 21, 29, 29, 35, 35, 46, 42, 56, 54, 65, 67, 81, 77, 98, 95, 115, 114, 139, 135, 164, 165, 190, 195, 230, 225, 272, 271, 313, 321, 370, 374, 433, 441, 501, 514, 589, 592, 681, 698, 778, 809, 907
Offset: 0

Views

Author

Vladeta Jovovic, Mar 09 2006

Keywords

Comments

The Heinz numbers of these partitions are given by A325127. - Gus Wiseman, Apr 02 2019

Examples

			a(2) = 1 because we have [1,1]; a(10) = 4 because we have [2,2,2,2,2], [2,2,2,2,1,1], [2,2,2,1,1,1,1] and [1^10].
From _Gus Wiseman_, Apr 02 2019: (Start)
The initial terms count the following integer partitions:
   0: ()
   2: (11)
   3: (111)
   4: (1111)
   5: (11111)
   6: (222)
   6: (111111)
   7: (1111111)
   8: (2222)
   8: (22211)
   8: (11111111)
   9: (222111)
   9: (111111111)
  10: (22222)
  10: (222211)
  10: (2221111)
  10: (1111111111)
  11: (2222111)
  11: (22211111)
  11: (11111111111)
  12: (3333)
  12: (222222)
  12: (2222211)
  12: (22221111)
  12: (222111111)
  12: (111111111111)
(End)
		

Crossrefs

Programs

  • Maple
    g:=product((1-x^k+x^(k*(k+1)))/(1-x^k),k=1..30): gser:=series(g,x=0,75): seq(coeff(gser,x,n),n=0..70); # Emeric Deutsch, Mar 12 2006
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1) +add(b(n-i*j, i-1), j=i+1..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..80);  # Alois P. Heinz, Feb 09 2017
  • Mathematica
    CoefficientList[ Series[ Product[(1 - x^k + x^(k(k + 1)))/(1 - x^k), {k, 14}], {x, 0, 66}], x] (* Robert G. Wilson v, Mar 12 2006 *)
    Table[Length[Select[IntegerPartitions[n],And@@Table[Count[#,i]>i,{i,Union[#]}]&]],{n,0,30}] (* Gus Wiseman, Apr 02 2019 *)

Formula

G.f.: Product_{k>=1} (1-x^k+x^(k*(k+1)))/(1-x^k).

Extensions

More terms from Robert G. Wilson v and Emeric Deutsch, Mar 12 2006

A352142 Numbers whose prime factorization has all odd indices and all odd exponents.

Original entry on oeis.org

1, 2, 5, 8, 10, 11, 17, 22, 23, 31, 32, 34, 40, 41, 46, 47, 55, 59, 62, 67, 73, 82, 83, 85, 88, 94, 97, 103, 109, 110, 115, 118, 125, 127, 128, 134, 136, 137, 146, 149, 155, 157, 160, 166, 167, 170, 179, 184, 187, 191, 194, 197, 205, 206, 211, 218, 227, 230
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239, length A001222.
A number's prime signature is the sequence of positive exponents in its prime factorization, which is row n of A124010, length A001221, sum A001222.
These are the Heinz numbers of integer partitions with all odd parts and all odd multiplicities, counted by A117958.

Examples

			The terms together with their prime indices begin:
   1 = 1
   2 = prime(1)
   5 = prime(3)
   8 = prime(1)^3
  10 = prime(1) prime(3)
  11 = prime(5)
  17 = prime(7)
  22 = prime(1) prime(5)
  23 = prime(9)
  31 = prime(11)
  32 = prime(1)^5
  34 = prime(1) prime(7)
  40 = prime(1)^3 prime(3)
		

Crossrefs

The restriction to primes is A031368.
The first condition alone is A066208, counted by A000009.
These partitions are counted by A117958.
The squarefree case is A258116, even A258117.
The second condition alone is A268335, counted by A055922.
The even-even version is A352141 counted by A035444.
A000290 = exponents all even, counted by A035363.
A056166 = exponents all prime, counted by A055923.
A066207 = indices all even, counted by A035363 (complement A086543).
A109297 = same indices as exponents, counted by A114640.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A124010 gives prime signature, sorted A118914, length A001221, sum A001222.
A162641 counts even prime exponents, odd A162642.
A257991 counts odd prime indices, even A257992.
A325131 = disjoint indices from exponents, counted by A114639.
A346068 = indices and exponents all prime, counted by A351982.
A351979 = odd indices with even exponents, counted by A035457.
A352140 = even indices with odd exponents, counted by A055922 aerated.
A352143 = odd indices with odd conjugate indices, counted by A053253 aerated.

Programs

  • Mathematica
    Select[Range[100],#==1||And@@OddQ/@PrimePi/@First/@FactorInteger[#]&&And@@OddQ/@Last/@FactorInteger[#]&]
  • Python
    from itertools import count, islice
    from sympy import primepi, factorint
    def A352142_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda k:all(map(lambda x:x[1]%2 and primepi(x[0])%2, factorint(k).items())),count(max(startvalue,1)))
    A352142_list = list(islice(A352142_gen(),30)) # Chai Wah Wu, Mar 18 2022

Formula

Intersection of A066208 and A268335.
A257991(a(n)) = A001222(a(n)).
A162642(a(n)) = A001221(a(n)).
A257992(a(n)) = A162641(a(n)) = 0.

A325706 Heinz numbers of integer partitions containing all of their distinct multiplicities.

Original entry on oeis.org

1, 2, 6, 9, 10, 12, 14, 18, 22, 26, 30, 34, 36, 38, 40, 42, 46, 58, 60, 62, 66, 70, 74, 78, 82, 84, 86, 90, 94, 102, 106, 110, 112, 114, 118, 120, 122, 125, 126, 130, 132, 134, 138, 142, 146, 150, 154, 156, 158, 166, 170, 174, 178, 180, 182, 186, 190, 194, 198
Offset: 1

Views

Author

Gus Wiseman, May 18 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
Also numbers n divisible by the squarefree kernel of their "shadow" A181819(n).
The enumeration of these partitions by sum is given by A325705.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    6: {1,2}
    9: {2,2}
   10: {1,3}
   12: {1,1,2}
   14: {1,4}
   18: {1,2,2}
   22: {1,5}
   26: {1,6}
   30: {1,2,3}
   34: {1,7}
   36: {1,1,2,2}
   38: {1,8}
   40: {1,1,1,3}
   42: {1,2,4}
   46: {1,9}
   58: {1,10}
   60: {1,1,2,3}
   62: {1,11}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],#==1||SubsetQ[PrimePi/@First/@FactorInteger[#],Last/@FactorInteger[#]]&]
Showing 1-10 of 21 results. Next