cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114715 Number A(n,m) of linear extensions of a 2 X n X m lattice; square array A(n,m), n>=1, m>=1, read by antidiagonals.

Original entry on oeis.org

1, 2, 2, 5, 48, 5, 14, 2452, 2452, 14, 42, 183958, 4877756, 183958, 42, 132, 17454844, 20071150430, 20071150430, 17454844, 132, 429, 1941406508, 129586764260850, 6708527580006468, 129586764260850, 1941406508, 429
Offset: 1

Views

Author

Mitch Harris, Dec 27 2005

Keywords

Examples

			Square array A(n,m) begins:
   1,      2,           5,               14, ...
   2,     48,        2452,           183958, ...
   5,   2452,     4877756,      20071150430, ...
  14, 183958, 20071150430, 6708527580006468, ...
		

References

  • Stanley, R., Enumerative Combinatorics, Vol. 2, Proposition 7.10.3 and Vol. 1, Sec 3.5 Chains in Distributive Lattices.

Crossrefs

Main diagonal gives A370257.

Programs

  • Maple
    b := proc(l) option remember; local n; n:= nops(l);
          `if`({seq(l[i][], i=1..n)}={0}, 1, add(`if`(l[i][1]>l[i][2] and
           l[i][1]>l[i+1][1], b(subsop(i=[l[i][1]-1, l[i][2]], l)), 0),
           i=1..n-1)+ add(`if`(l[i][2]>l[i+1][2], b(subsop(i=[l[i][1],
           l[i][2]-1], l)), 0), i=1..n-1)+ `if`(l[n][1]>l[n][2],
           b(subsop(n=[l[n][1]-1, l[n][2]], l)), 0)+ `if`(l[n][2]>0,
           b(subsop(n=[l[n][1], l[n][2]-1], l)), 0))
         end:
    A:= (n, m)-> `if`(m>=n, b([[m$2]$n]), b([[n$2]$m])):
    seq(seq(A(n, d+1-n), n=1..d), d=1..8);  # Alois P. Heinz, Jun 29 2012
  • Mathematica
    b[l_List] := b[l] = With[{n = Length[l]}, If[Union[Table[l[[i]], {i, 1, n}] // Flatten] == {0}, 1, Sum[If[l[[i, 1]] > l[[i, 2]] && l[[i, 1]] > l[[i+1, 1]], b[ReplacePart[l, i -> {l[[i, 1]]-1, l[[i, 2]]}]], 0], {i, 1, n-1}] + Sum[If[l[[i, 2]] > l[[i+1, 2]], b[ReplacePart[l, i -> {l[[i, 1]], l[[i, 2]]-1}]], 0], {i, 1, n-1}] + If[l[[n, 1]] > l[[n, 2]], b[ReplacePart[l, n -> {l[[n, 1]]-1, l[[n, 2]]} ]], 0] + If[l[[n, 2]] > 0, b[ReplacePart[l, n -> {l[[n, 1]], l[[n, 2]]-1}]], 0]]] ; A[n_, m_] := If[m >= n, b[Array[{m, m}&, n]], b[Array[{n, n}&, m]]]; Table[ Table[A[n, d+1-n], {n, 1, d}], {d, 1, 8}] // Flatten (* Jean-François Alcover, Mar 11 2015, after Alois P. Heinz *)

Formula

A(n,1) = A(1,n) = A000108(n).
A(n,2) = A(2,n) = A114714(n).
A(n,3) = A(3,n) = A114716(n).

Extensions

Edited by Alois P. Heinz, Jun 29 2012