A114715 Number A(n,m) of linear extensions of a 2 X n X m lattice; square array A(n,m), n>=1, m>=1, read by antidiagonals.
1, 2, 2, 5, 48, 5, 14, 2452, 2452, 14, 42, 183958, 4877756, 183958, 42, 132, 17454844, 20071150430, 20071150430, 17454844, 132, 429, 1941406508, 129586764260850, 6708527580006468, 129586764260850, 1941406508, 429
Offset: 1
Examples
Square array A(n,m) begins: 1, 2, 5, 14, ... 2, 48, 2452, 183958, ... 5, 2452, 4877756, 20071150430, ... 14, 183958, 20071150430, 6708527580006468, ...
References
- Stanley, R., Enumerative Combinatorics, Vol. 2, Proposition 7.10.3 and Vol. 1, Sec 3.5 Chains in Distributive Lattices.
Links
- Alois P. Heinz, Antidiagonals n = 1..12, flattened
Programs
-
Maple
b := proc(l) option remember; local n; n:= nops(l); `if`({seq(l[i][], i=1..n)}={0}, 1, add(`if`(l[i][1]>l[i][2] and l[i][1]>l[i+1][1], b(subsop(i=[l[i][1]-1, l[i][2]], l)), 0), i=1..n-1)+ add(`if`(l[i][2]>l[i+1][2], b(subsop(i=[l[i][1], l[i][2]-1], l)), 0), i=1..n-1)+ `if`(l[n][1]>l[n][2], b(subsop(n=[l[n][1]-1, l[n][2]], l)), 0)+ `if`(l[n][2]>0, b(subsop(n=[l[n][1], l[n][2]-1], l)), 0)) end: A:= (n, m)-> `if`(m>=n, b([[m$2]$n]), b([[n$2]$m])): seq(seq(A(n, d+1-n), n=1..d), d=1..8); # Alois P. Heinz, Jun 29 2012
-
Mathematica
b[l_List] := b[l] = With[{n = Length[l]}, If[Union[Table[l[[i]], {i, 1, n}] // Flatten] == {0}, 1, Sum[If[l[[i, 1]] > l[[i, 2]] && l[[i, 1]] > l[[i+1, 1]], b[ReplacePart[l, i -> {l[[i, 1]]-1, l[[i, 2]]}]], 0], {i, 1, n-1}] + Sum[If[l[[i, 2]] > l[[i+1, 2]], b[ReplacePart[l, i -> {l[[i, 1]], l[[i, 2]]-1}]], 0], {i, 1, n-1}] + If[l[[n, 1]] > l[[n, 2]], b[ReplacePart[l, n -> {l[[n, 1]]-1, l[[n, 2]]} ]], 0] + If[l[[n, 2]] > 0, b[ReplacePart[l, n -> {l[[n, 1]], l[[n, 2]]-1}]], 0]]] ; A[n_, m_] := If[m >= n, b[Array[{m, m}&, n]], b[Array[{n, n}&, m]]]; Table[ Table[A[n, d+1-n], {n, 1, d}], {d, 1, 8}] // Flatten (* Jean-François Alcover, Mar 11 2015, after Alois P. Heinz *)
Extensions
Edited by Alois P. Heinz, Jun 29 2012