cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114717 Number of linear extensions of the divisor lattice of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 5, 1, 2, 2, 1, 1, 5, 1, 5, 2, 2, 1, 14, 1, 2, 1, 5, 1, 48, 1, 1, 2, 2, 2, 42, 1, 2, 2, 14, 1, 48, 1, 5, 5, 2, 1, 42, 1, 5, 2, 5, 1, 14, 2, 14, 2, 2, 1, 2452, 1, 2, 5, 1, 2, 48, 1, 5, 2, 48, 1, 462, 1, 2, 5, 5, 2, 48, 1, 42, 1, 2, 1, 2452, 2, 2, 2, 14, 1, 2452, 2
Offset: 1

Views

Author

Mitch Harris and Antti Karttunen, Dec 27 2005

Keywords

Comments

Notice that only the powers of the primes determine a(n), so a(12) = a(75) = 5.
For prime powers, the lattice is a chain, so there is 1 linear extension.
a(p^1*q^n) = A000108(n+1), the Catalan numbers.
Alternatively, the number of ways to arrange the divisors of n in such a way that no divisor has any of its own divisors following it. E.g., for 12, the following five arrangements are possible: 1,2,3,4,6,12; 1,2,3,6,4,12; 1,2,4,3,6,12; 1,3,2,4,6,12 and 1,3,2,6,4,12. But 1,2,6,4,3,12 is not possible because 3 divides 6 but follows it. Thus a(12)=5. - Antti Karttunen, Jan 11 2006
For n = p1^r1 * p2^r2, the lattice is a grid (r1+1)*(r2+1), whose linear extensions are counted by ((r1+1)*(r2+1))!/Product_{k=0..r2} (r1+1+k)!/k!. Cf. A060854.

References

  • R. Stanley, Enumerative Combinatorics, Vol. 2, Proposition 7.10.3 and Vol. 1, Sec 3.5 Chains in Distributive Lattices.

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(s) option remember;
          `if`(nops(s)<2, 1, add(`if`(nops(select(y->
           irem(y, x)=0, s))=1, b(s minus {x}), 0), x=s))
        end:
    a:= proc(n) local l, m;
          l:= sort(ifactors(n)[2], (x, y)-> x[2]>y[2]);
          m:= mul(ithprime(i)^l[i][2], i=1..nops(l));
          b(divisors(m) minus {1, m})
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Jun 29 2012
  • Mathematica
    b[s_List] := b[s] = If[Length[s]<2, 1, Sum[If[Length[Select[s, Mod[#, x] == 0 &]] == 1, b[Complement[s, {x}]], 0], {x, s}]]; a[n_] := Module[{l, m}, l = Sort[ FactorInteger[n], #1[[2]] > #2[[2]] &]; m = Product[Prime[i]^l[[i]][[2]], {i, 1, Length[l]}]; b[Divisors[m] // Rest // Most]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, May 28 2015, after Alois P. Heinz *)