cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A113513 First number in the ascending sequence associated with A114754.

Original entry on oeis.org

1, 10, 1, 6, 9, 3, 9, 4, 1, 30, 1, 93, 9, 39, 33, 1, 25, 22, 16, 121
Offset: 1

Views

Author

Robert G. Wilson v, Jan 03 2006

Keywords

A114758 Smallest prime of the form: n successive positive integers in descending order followed by a 1.

Original entry on oeis.org

11, 211, 5431, 76541, 17161514131, 1211109871, 98765431, 876543211, 9876543211, 242322212019181716151, 11109876543211, 1131121111101091081071061051041031021, 555453525150494847464544431
Offset: 1

Views

Author

Amarnath Murthy, Jan 01 2006

Keywords

Examples

			a(4) = 76541, four successive positive integers 7,6,5,4 in descending order followed by a 1.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local k,p,j;
      for k from 0 do
        p:= parse(cat(seq(k+j,j=n .. 1,-1), 1));
        if isprime(p) then return p fi
      od
    end proc:map(f, [$1..15]); # Robert Israel, Apr 03 2023
  • Mathematica
    a[n_]:=(For[m=1, (v={};Do[v=Join[v, IntegerDigits[k]], {k, m+n-1, m, -1}]);!PrimeQ[10FromDigits[v]+1], m++ ];10FromDigits[v]+1);Table[a[n], {n, 14}] (* Farideh Firoozbakht, Jan 02 2006 *)
    f[n_] := Block[{t = Reverse@Range@n}, While[p = FromDigits@Flatten@IntegerDigits@Join[t, {1}]; ! PrimeQ@p, t++ ]; p]; Array[f, 13] (* Robert G. Wilson v, Jan 03 2006 *)

Extensions

More terms from Robert G. Wilson v, Jan 03 2006

A114756 Smallest prime of the form: n successive positive integers in ascending order followed by a 7.

Original entry on oeis.org

17, 127, 1237, 12347, 123457, 56789107, 456789107, 3456789107, 4567891011127, 616263646566676869707, 13141516171819202122237, 2021222324252627282930317, 151617181920212223242526277
Offset: 1

Views

Author

Amarnath Murthy, Jan 01 2006

Keywords

Examples

			a(4) = 12347, four successive positive integers 1,2,3,4 in ascending order followed by a 7.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=(For[m=1, (v={};Do[v=Join[v, IntegerDigits[k]], {k, m, m+n-1}]);!PrimeQ[10FromDigits[v]+7], m++ ];10FromDigits[v]+7);Table[a[n], {n, 14}] - Farideh Firoozbakht
    f[n_] := Block[{t = Range@n}, While[p = FromDigits@Flatten@IntegerDigits@Join[t, {7}]; !PrimeQ@p, t++ ]; p]; Array[f, 14] (* Robert G. Wilson v *)
    Table[SelectFirst[10 FromDigits[Flatten[IntegerDigits/@#]]+7&/@ Partition[ Range[1000],n,1],PrimeQ],{n,20}] (* Harvey P. Dale, Jan 29 2022 *)

Extensions

A108145 Smallest prime consisting of n successive positive integers in descending order followed by a 9. a(3*k) = 0 as no such prime exists.

Original entry on oeis.org

19, 439, 0, 262524239, 765439, 0, 109876549, 1098765439, 0, 504948474645444342419, 27262524232221201918179, 0, 2019181716151413121110989, 64636261605958575655545352519, 0
Offset: 1

Views

Author

Amarnath Murthy, Jan 01 2006

Keywords

Examples

			a(2) = 439, two successive positive integers 4,3 in descending order followed by a 9.
a(4) = 262524239 four successive positive integers 26,25,24,23 in descending order followed by a 9.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=If[Mod[n, 3]==0, 0, (For[m=1, (v={};Do[v=Join[v, IntegerDigits[k]], {k, m+n-1, m, -1}]);!PrimeQ[10FromDigits[v]+9], m++ ];10FromDigits[v]+9)];Table[a[n], {n, 16}] (* Farideh Firoozbakht *)
    f[n_] := Block[{t = Reverse@Range@n}, If[ Mod[n, 3] == 0, 0, While[p = FromDigits@Flatten@IntegerDigits@Join[t, {9}]; !PrimeQ@p, t++ ]; p]]; Array[f, 16] (* Robert G. Wilson v *)

Extensions

A112716 Smallest prime of the form: n successive positive integers in descending order followed by a 7.

Original entry on oeis.org

17, 547, 3217, 65437, 543217, 8765437, 76543217, 41403938373635347, 9876543217, 282726252423222120197, 1312111098765437, 2322212019181716151413127, 222120191817161514131211107, 1615141312111098765437
Offset: 1

Views

Author

Amarnath Murthy, Jan 01 2006

Keywords

Examples

			a(4) = 65437, four successive positive integers 6,5,4,3 in descending order followed by a 7.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=(For[m=1, (v={};Do[v=Join[v, IntegerDigits[k]], {k, m+n-1, m, -1}]);!PrimeQ[10FromDigits[v]+7], m++ ];10FromDigits[v]+7);Table[a[n], {n, 14}] - Farideh Firoozbakht
    f[n_] := Block[{t = Reverse@Range@n}, While[p = FromDigits@Flatten@IntegerDigits@Join[t, {7}]; !PrimeQ@p, t++ ]; p]; Array[f, 14] (* Robert G. Wilson v *)

Extensions

A114755 Smallest prime of the form: n successive positive integers in ascending order followed by a 3. a(3k) = 0 as no such prime exists.

Original entry on oeis.org

13, 233, 0, 12343, 345673, 0, 5678910113, 54555657585960613, 0, 373839404142434445463, 17181920212223242526273, 0, 2345678910111213143, 23242526272829303132333435363, 0, 8910111213141516171819202122233
Offset: 1

Views

Author

Amarnath Murthy, Jan 01 2006

Keywords

Examples

			a(4) = 12343, four successive positive integers 1,2,3,4 in ascending order followed by a 3.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=If[Mod[n, 3]==0, 0, (For[m=1, (v={};Do[v=Join[v, IntegerDigits[k]], {k, m, m+n-1}]);!PrimeQ[10FromDigits[v]+3], m++ ];10FromDigits[v]+3)];Table[a[n], {n, 17}] - Farideh Firoozbakht
    f[n_] := Block[{t = Range@n}, If[ Mod[n, 3] == 0, 0, While[p = FromDigits@Flatten@IntegerDigits@Join[t, {3}]; !PrimeQ@p, t++ ]; p]]; Array[f, 20] (* Robert G. Wilson v *)

Extensions

A114757 Smallest prime of the form: n successive positive integers in ascending order followed by a 9. a(3k) = 0 as no such prime exists.

Original entry on oeis.org

19, 239, 0, 23459, 345679, 0, 23456789, 234567899, 0, 2345678910119, 6789101112131415169, 0, 313233343536373839404142439, 36373839404142434445464748499, 0, 123456789101112131415169
Offset: 1

Views

Author

Amarnath Murthy, Jan 01 2006

Keywords

Examples

			a(4) = 23459, four successive positive integers 2,3,4,5 in ascending order followed by a 9.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=If[Mod[n, 3]==0, 0, (For[m=1, (v={};Do[v=Join[v, IntegerDigits[k]], {k, m, m+n-1}]);!PrimeQ[10FromDigits[v]+9], m++ ];10FromDigits[v]+9)];Table[a[n], {n, 17}] - Farideh Firoozbakht
    f[n_] := Block[{t = Range@n}, If[ Mod[n, 3] == 0, 0, While[p = FromDigits@Flatten@IntegerDigits@Join[t, {9}]; !PrimeQ@p, t++ ]; p]]; Array[f, 16] (* Robert G. Wilson v *)

Extensions

A114759 Smallest prime of the form: n successive positive integers in descending order followed by a 3. a(3k) = 0 as no such prime exists.

Original entry on oeis.org

13, 433, 0, 54323, 654323, 0, 292827262524233, 987654323, 0, 1716151413121110983, 181716151413121110983, 0, 1413121110987654323, 27262524232221201918171615143, 0, 1716151413121110987654323
Offset: 1

Views

Author

Amarnath Murthy, Jan 01 2006

Keywords

Examples

			a(4) = 54323, four successive positive integers 5,4,3,2 in descending order followed by a 3.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=If[Mod[n, 3]==0, 0, (For[m=1, (v={};Do[v=Join[v, IntegerDigits[k]], {k, m+n-1, m, -1}]);!PrimeQ[10FromDigits[v]+3], m++ ];10FromDigits[v] +3)];Table[a[n], {n, 17}] - Farideh Firoozbakht
    f[n_] := Block[{t = Reverse@Range@n}, If[Mod[n, 3] == 0, 0, While[p = FromDigits@Flatten@IntegerDigits@Join[t, {3}]; ! PrimeQ@p, t++ ]; p]]; Array[f, 18] (* Robert G. Wilson v *)

Extensions

A376221 The smallest Champernowne prime in base n.

Original entry on oeis.org

3, 5, 109, 7, 18796638871, 131870666077, 83, 11, 1234567891, 13, 24677
Offset: 2

Views

Author

Scott R. Shannon, Sep 16 2024

Keywords

Comments

See A176942 for further details.
If a(13) exists it has more than 4800 decimal digits. See the attached text file for other known values up to n = 36.
If a(13) exists it has more than 86468 decimal digits, corresponding to concatenation of up to 20000 base-13 numbers. - Michael S. Branicky, Sep 20 2024

Examples

			a(2) = 3 as 11_2 is prime.
a(3) = 5 as 12_3 is prime.
a(4) = 109 as 1231_4 is prime.
a(5) = 7 as 12_5 is prime.
a(6) = 18796638871 as 12345101112131_6 is prime.
a(7) = 131870666077 as 12345610111213_7 is prime.
a(8) = 83 as 123_8 is prime.
a(9) = 11 as 12_9 is prime.
a(10) = 1234567891 as 1234567891_10 is prime. See A176942.
a(11) = 13 as 12_11 is prime.
a(12) = 24677 as 12345_12 is prime.
		

Crossrefs

Showing 1-9 of 9 results.