cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A113514 First number in the descending sequence associated with A114758.

Original entry on oeis.org

1, 2, 5, 7, 17, 12, 9, 8, 9, 24, 11, 113, 55, 19, 22, 60, 40, 38, 42, 73
Offset: 1

Views

Author

Robert G. Wilson v, Jan 03 2006

Keywords

A114754 Smallest prime of the form: n successive positive integers in ascending order followed by a 1.

Original entry on oeis.org

11, 10111, 1231, 67891, 9101112131, 3456781, 91011121314151, 45678910111, 1234567891, 303132333435363738391, 12345678910111, 939495969798991001011021031041, 91011121314151617181920211
Offset: 1

Views

Author

Amarnath Murthy, Jan 01 2006

Keywords

Examples

			a(2) = 10111= 10 followed by 11 followed by 1.
a(3) = 1231, three successive positive integers 1,2,3 in ascending order followed by a 1.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=(For[m=1, (v={};Do[v=Join[v, IntegerDigits[k]], {k, m, m+n-1}]);!PrimeQ[10FromDigits[v]+1], m++ ];10FromDigits[v]+1);Table[a[n], {n, 14}] - Farideh Firoozbakht
    f[n_] := Block[{t = Range@n}, While[p = FromDigits@Flatten@IntegerDigits@Join[t, {1}]; !PrimeQ@p, t++ ]; p]; Array[f, 13] (* Robert G. Wilson v *)

Extensions

A114756 Smallest prime of the form: n successive positive integers in ascending order followed by a 7.

Original entry on oeis.org

17, 127, 1237, 12347, 123457, 56789107, 456789107, 3456789107, 4567891011127, 616263646566676869707, 13141516171819202122237, 2021222324252627282930317, 151617181920212223242526277
Offset: 1

Views

Author

Amarnath Murthy, Jan 01 2006

Keywords

Examples

			a(4) = 12347, four successive positive integers 1,2,3,4 in ascending order followed by a 7.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=(For[m=1, (v={};Do[v=Join[v, IntegerDigits[k]], {k, m, m+n-1}]);!PrimeQ[10FromDigits[v]+7], m++ ];10FromDigits[v]+7);Table[a[n], {n, 14}] - Farideh Firoozbakht
    f[n_] := Block[{t = Range@n}, While[p = FromDigits@Flatten@IntegerDigits@Join[t, {7}]; !PrimeQ@p, t++ ]; p]; Array[f, 14] (* Robert G. Wilson v *)
    Table[SelectFirst[10 FromDigits[Flatten[IntegerDigits/@#]]+7&/@ Partition[ Range[1000],n,1],PrimeQ],{n,20}] (* Harvey P. Dale, Jan 29 2022 *)

Extensions

A108145 Smallest prime consisting of n successive positive integers in descending order followed by a 9. a(3*k) = 0 as no such prime exists.

Original entry on oeis.org

19, 439, 0, 262524239, 765439, 0, 109876549, 1098765439, 0, 504948474645444342419, 27262524232221201918179, 0, 2019181716151413121110989, 64636261605958575655545352519, 0
Offset: 1

Views

Author

Amarnath Murthy, Jan 01 2006

Keywords

Examples

			a(2) = 439, two successive positive integers 4,3 in descending order followed by a 9.
a(4) = 262524239 four successive positive integers 26,25,24,23 in descending order followed by a 9.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=If[Mod[n, 3]==0, 0, (For[m=1, (v={};Do[v=Join[v, IntegerDigits[k]], {k, m+n-1, m, -1}]);!PrimeQ[10FromDigits[v]+9], m++ ];10FromDigits[v]+9)];Table[a[n], {n, 16}] (* Farideh Firoozbakht *)
    f[n_] := Block[{t = Reverse@Range@n}, If[ Mod[n, 3] == 0, 0, While[p = FromDigits@Flatten@IntegerDigits@Join[t, {9}]; !PrimeQ@p, t++ ]; p]]; Array[f, 16] (* Robert G. Wilson v *)

Extensions

A112716 Smallest prime of the form: n successive positive integers in descending order followed by a 7.

Original entry on oeis.org

17, 547, 3217, 65437, 543217, 8765437, 76543217, 41403938373635347, 9876543217, 282726252423222120197, 1312111098765437, 2322212019181716151413127, 222120191817161514131211107, 1615141312111098765437
Offset: 1

Views

Author

Amarnath Murthy, Jan 01 2006

Keywords

Examples

			a(4) = 65437, four successive positive integers 6,5,4,3 in descending order followed by a 7.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=(For[m=1, (v={};Do[v=Join[v, IntegerDigits[k]], {k, m+n-1, m, -1}]);!PrimeQ[10FromDigits[v]+7], m++ ];10FromDigits[v]+7);Table[a[n], {n, 14}] - Farideh Firoozbakht
    f[n_] := Block[{t = Reverse@Range@n}, While[p = FromDigits@Flatten@IntegerDigits@Join[t, {7}]; !PrimeQ@p, t++ ]; p]; Array[f, 14] (* Robert G. Wilson v *)

Extensions

A114755 Smallest prime of the form: n successive positive integers in ascending order followed by a 3. a(3k) = 0 as no such prime exists.

Original entry on oeis.org

13, 233, 0, 12343, 345673, 0, 5678910113, 54555657585960613, 0, 373839404142434445463, 17181920212223242526273, 0, 2345678910111213143, 23242526272829303132333435363, 0, 8910111213141516171819202122233
Offset: 1

Views

Author

Amarnath Murthy, Jan 01 2006

Keywords

Examples

			a(4) = 12343, four successive positive integers 1,2,3,4 in ascending order followed by a 3.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=If[Mod[n, 3]==0, 0, (For[m=1, (v={};Do[v=Join[v, IntegerDigits[k]], {k, m, m+n-1}]);!PrimeQ[10FromDigits[v]+3], m++ ];10FromDigits[v]+3)];Table[a[n], {n, 17}] - Farideh Firoozbakht
    f[n_] := Block[{t = Range@n}, If[ Mod[n, 3] == 0, 0, While[p = FromDigits@Flatten@IntegerDigits@Join[t, {3}]; !PrimeQ@p, t++ ]; p]]; Array[f, 20] (* Robert G. Wilson v *)

Extensions

A114757 Smallest prime of the form: n successive positive integers in ascending order followed by a 9. a(3k) = 0 as no such prime exists.

Original entry on oeis.org

19, 239, 0, 23459, 345679, 0, 23456789, 234567899, 0, 2345678910119, 6789101112131415169, 0, 313233343536373839404142439, 36373839404142434445464748499, 0, 123456789101112131415169
Offset: 1

Views

Author

Amarnath Murthy, Jan 01 2006

Keywords

Examples

			a(4) = 23459, four successive positive integers 2,3,4,5 in ascending order followed by a 9.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=If[Mod[n, 3]==0, 0, (For[m=1, (v={};Do[v=Join[v, IntegerDigits[k]], {k, m, m+n-1}]);!PrimeQ[10FromDigits[v]+9], m++ ];10FromDigits[v]+9)];Table[a[n], {n, 17}] - Farideh Firoozbakht
    f[n_] := Block[{t = Range@n}, If[ Mod[n, 3] == 0, 0, While[p = FromDigits@Flatten@IntegerDigits@Join[t, {9}]; !PrimeQ@p, t++ ]; p]]; Array[f, 16] (* Robert G. Wilson v *)

Extensions

A114759 Smallest prime of the form: n successive positive integers in descending order followed by a 3. a(3k) = 0 as no such prime exists.

Original entry on oeis.org

13, 433, 0, 54323, 654323, 0, 292827262524233, 987654323, 0, 1716151413121110983, 181716151413121110983, 0, 1413121110987654323, 27262524232221201918171615143, 0, 1716151413121110987654323
Offset: 1

Views

Author

Amarnath Murthy, Jan 01 2006

Keywords

Examples

			a(4) = 54323, four successive positive integers 5,4,3,2 in descending order followed by a 3.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=If[Mod[n, 3]==0, 0, (For[m=1, (v={};Do[v=Join[v, IntegerDigits[k]], {k, m+n-1, m, -1}]);!PrimeQ[10FromDigits[v]+3], m++ ];10FromDigits[v] +3)];Table[a[n], {n, 17}] - Farideh Firoozbakht
    f[n_] := Block[{t = Reverse@Range@n}, If[Mod[n, 3] == 0, 0, While[p = FromDigits@Flatten@IntegerDigits@Join[t, {3}]; ! PrimeQ@p, t++ ]; p]]; Array[f, 18] (* Robert G. Wilson v *)

Extensions

Showing 1-8 of 8 results.