cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114806 Nonuple factorial, 9-factorial, n!9, n!!!!!!!!!.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 22, 36, 52, 70, 90, 112, 136, 162, 190, 440, 756, 1144, 1610, 2160, 2800, 3536, 4374, 5320, 12760, 22680, 35464, 51520, 71280, 95200, 123760, 157464, 196840, 484880, 884520, 1418560, 2112320, 2993760, 4093600
Offset: 0

Views

Author

Jonathan Vos Post, Feb 19 2006

Keywords

Examples

			a(10) = 10 * a(10-9) = 10 * a(1) = 10 * 1 = 10.
a(20) = 20 * a(20-9) = 20 * a(11) = 20 * (11*a(11-9)) = 20 * 11 * a(2) = 20 * 11 * 2 = 440.
a(30) = 30 * a(30-9) = 30 * a(21) = 30 * (21*a(21-9)) = 30 * 21 * a(12) = 30 * 21 * (12*a(12-9)) = 30 * 21 * 12 * 3 = 22680.
		

Crossrefs

Programs

  • GAP
    a:= function(n)
        if n<1 then return 1;
        else return n*a(n-9);
        fi;
      end;
    List([0..50], n-> a(n) ); # G. C. Greubel, Aug 21 2019
  • Magma
    b:=func< n | n le 9 select n else n*Self(n-9) >;
    [1] cat [b(n): n in [1..50]]; // G. C. Greubel, Aug 21 2019
    
  • Maple
    f:= proc(n) option remember;
    n*procname(n-9)
    end proc:
    f(0):= 1: for n from 1 to 8 do f(n):= n od:
    map(f, [$0..100]); # Robert Israel, Jun 21 2019
  • Mathematica
    NFactorialM[n_, m_] := Block[{k = n, p = Max[1, n]}, While[k > m, k -= m; p *= k]; p]; Array[ NFactorialM[#, 9] &, 44, 0] (* Robert G. Wilson v, May 10 2011 *)
    a[n_]:= a[n]= If[n<1, 1, n*a[n-9]]; Table[a[n], {n,0,50}] (* G. C. Greubel, Aug 21 2019 *)
    Table[Times@@Range[n,1,-9],{n,0,50}] (* Harvey P. Dale, Nov 13 2021 *)
  • PARI
    a(n)=if(n<1, 1, n*a(n-9));
    vector(50, n, n--; a(n) ) \\ G. C. Greubel, Aug 21 2019
    
  • Sage
    def a(n):
        if (n<1): return 1
        else: return n*a(n-9)
    [a(n) for n in (0..50)] # G. C. Greubel, Aug 21 2019
    

Formula

D-finite with recurrence: a(0) = 1, a(n) = n for 1 <= n <= 9, a(n) = n*a(n-9) for n >= 10.
From Robert Israel, Jun 21 2019: (Start)
a(9*m) = 9^m*m!.
a(9*m+k) = 9^m*(9*m+k)*Gamma(m+k/9)/Gamma(k/9) for 1 <= k <= 8. (End)
Sum_{n>=0} 1/a(n) = A288096. - Amiram Eldar, Nov 10 2020