A114806 Nonuple factorial, 9-factorial, n!9, n!!!!!!!!!.
1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 22, 36, 52, 70, 90, 112, 136, 162, 190, 440, 756, 1144, 1610, 2160, 2800, 3536, 4374, 5320, 12760, 22680, 35464, 51520, 71280, 95200, 123760, 157464, 196840, 484880, 884520, 1418560, 2112320, 2993760, 4093600
Offset: 0
Examples
a(10) = 10 * a(10-9) = 10 * a(1) = 10 * 1 = 10. a(20) = 20 * a(20-9) = 20 * a(11) = 20 * (11*a(11-9)) = 20 * 11 * a(2) = 20 * 11 * 2 = 440. a(30) = 30 * a(30-9) = 30 * a(21) = 30 * (21*a(21-9)) = 30 * 21 * a(12) = 30 * 21 * (12*a(12-9)) = 30 * 21 * 12 * 3 = 22680.
Links
- Robert Israel, Table of n, a(n) for n = 0..2955
- Eric Weisstein's World of Mathematics, Multifactorial.
Programs
-
GAP
a:= function(n) if n<1 then return 1; else return n*a(n-9); fi; end; List([0..50], n-> a(n) ); # G. C. Greubel, Aug 21 2019
-
Magma
b:=func< n | n le 9 select n else n*Self(n-9) >; [1] cat [b(n): n in [1..50]]; // G. C. Greubel, Aug 21 2019
-
Maple
f:= proc(n) option remember; n*procname(n-9) end proc: f(0):= 1: for n from 1 to 8 do f(n):= n od: map(f, [$0..100]); # Robert Israel, Jun 21 2019
-
Mathematica
NFactorialM[n_, m_] := Block[{k = n, p = Max[1, n]}, While[k > m, k -= m; p *= k]; p]; Array[ NFactorialM[#, 9] &, 44, 0] (* Robert G. Wilson v, May 10 2011 *) a[n_]:= a[n]= If[n<1, 1, n*a[n-9]]; Table[a[n], {n,0,50}] (* G. C. Greubel, Aug 21 2019 *) Table[Times@@Range[n,1,-9],{n,0,50}] (* Harvey P. Dale, Nov 13 2021 *)
-
PARI
a(n)=if(n<1, 1, n*a(n-9)); vector(50, n, n--; a(n) ) \\ G. C. Greubel, Aug 21 2019
-
Sage
def a(n): if (n<1): return 1 else: return n*a(n-9) [a(n) for n in (0..50)] # G. C. Greubel, Aug 21 2019
Formula
D-finite with recurrence: a(0) = 1, a(n) = n for 1 <= n <= 9, a(n) = n*a(n-9) for n >= 10.
From Robert Israel, Jun 21 2019: (Start)
a(9*m) = 9^m*m!.
a(9*m+k) = 9^m*(9*m+k)*Gamma(m+k/9)/Gamma(k/9) for 1 <= k <= 8. (End)
Sum_{n>=0} 1/a(n) = A288096. - Amiram Eldar, Nov 10 2020