cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A288371 Primes of the form k!9 + 1, where k!9 is the nonuple factorial number (A114806).

Original entry on oeis.org

2, 3, 5, 7, 11, 23, 37, 53, 71, 113, 137, 163, 191, 757, 2161, 2801, 51521, 1418561, 4093601, 42456961, 69509441, 105616001, 2420046721, 9160905601, 1270453824641, 2326680294401, 190787784140801, 509498986796801, 2805949277824001, 612940220628736001
Offset: 1

Views

Author

Robert Price, Jun 08 2017

Keywords

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
    Select[Table[MultiFactorial[i, 9] + 1, {i, 0, 100}], PrimeQ[#]&]

Formula

a(n) = 1 + A114806(A204660(n+1)). - Elmo R. Oliveira, Feb 26 2025

A289755 Primes of the form k!9-1, where k!9 is the nonuple factorial number (A114806).

Original entry on oeis.org

2, 3, 5, 7, 89, 439, 1609, 4373, 22679, 5445439, 152681759, 17893715839, 101636305971199, 12652843234348799, 266565181393279999, 4929089879840974847999, 16401565050020468398079999, 2263415976902824638935039999, 1692607074564424130419507199999
Offset: 1

Views

Author

Robert Price, Jul 11 2017

Keywords

Crossrefs

Cf. A204659.

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
    Select[Table[MultiFactorial[i, 9] - 1, {i, 2, 100}], PrimeQ[#]&]
    Select[Table[Times@@Range[n,1,-9]-1,{n,200}],PrimeQ] (* Harvey P. Dale, Sep 12 2019 *)

A045756 Expansion of e.g.f. (1-9*x)^(-1/9), 9-factorial numbers.

Original entry on oeis.org

1, 1, 10, 190, 5320, 196840, 9054640, 498005200, 31872332800, 2326680294400, 190787784140800, 17361688356812800, 1736168835681280000, 189242403089259520000, 22330603564532623360000, 2835986652695643166720000, 385694184766607470673920000, 55925656791158083247718400000
Offset: 0

Views

Author

Keywords

Comments

Nine-fold factorials of numbers 9k+1, k = 0, 1, 2, ... - M. F. Hasler, Feb 14 2020

Crossrefs

Cf. A008542, A048994, A114806 (9-fold factorials), A132393.
Cf. k-fold factorials : A000142 ("1-fold"), A001147 (2-fold), A007559 (3), A007696 (4), A008548 (5), A008542 (6), A045754 (7), A045755 (8), A144773 (10), A256268 (combined table).

Programs

  • GAP
    List([0..20], n-> Product([0..n-1], j-> 9*j+1) ); # G. C. Greubel, Nov 11 2019
  • Magma
    [1] cat [(&*[9*j+1: j in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Nov 11 2019
    
  • Maple
    seq( mul(9*j+1, j=0..n-1), n=0..20); # G. C. Greubel, Nov 11 2019
  • Mathematica
    Table[9^n*Pochhammer[1/9, n], {n,0,20}] (* G. C. Greubel, Nov 11 2019 *)
  • PARI
    vector(21, n, prod(j=0,n-2, 9*j+1) ) \\ G. C. Greubel, Nov 11 2019
    
  • Sage
    [product( (9*j+1) for j in (0..n-1)) for n in (0..20)] # G. C. Greubel, Nov 11 2019
    

Formula

a(n+1) = (9*n+1)(!^9) = Product_{k=0..n-1} (9*k+1), n >= 0.
E.g.f. (1-9*x)^(-1/9).
D-finite with recurrence: a(n) +(-9*n+8)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
a(n) = A114806(9n-8). - M. F. Hasler, Feb 14 2020
a(n) = Sum_{k = 0..n} (-9)^(n - k) * A048994(n, k) = Sum_{k = 0..n} 9^(n - k) * A132393(n, k). Philippe Deléham, Sep 20 2008
a(n) = (-8)^n * sum_{k = 0..n} (9/8)^k * s(n + 1, n + 1 - k), where s(n, k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
a(n) = 9^n * Gamma(n + 1/9) / Gamma(1/9). - Artur Jasinski Aug 23 2016
a(n) ~ sqrt(2 * Pi) * 9^n * n^(n - 7/18)/(Gamma(1/9) * exp(n)). - Ilya Gutkovskiy, Sep 10 2016
Sum_{n>=0} 1/a(n) = 1 + (e/9^8)^(1/9)*(Gamma(1/9) - Gamma(1/9, 1/9)). - Amiram Eldar, Dec 21 2022

Extensions

a(0)=1 inserted; merged with A144772; formulas and programs changed accordingly by Georg Fischer, Feb 15 2020

A288096 Decimal expansion of m(9) = Sum_{n>=0} 1/n!9, the 9th reciprocal multifactorial constant.

Original entry on oeis.org

4, 0, 8, 1, 3, 7, 5, 5, 2, 0, 1, 6, 8, 8, 9, 8, 5, 4, 4, 0, 7, 1, 1, 0, 5, 1, 4, 6, 6, 0, 9, 6, 1, 0, 6, 9, 4, 6, 2, 6, 4, 1, 0, 0, 7, 7, 3, 1, 8, 6, 0, 7, 5, 8, 8, 4, 3, 4, 8, 5, 1, 7, 5, 1, 6, 7, 4, 9, 3, 4, 8, 7, 6, 3, 9, 0, 3, 3, 3, 5, 9, 9, 2, 1, 0, 5, 4, 2, 4, 2, 3, 0, 5, 7, 2, 0, 3, 5, 9, 0, 7, 4
Offset: 1

Views

Author

Jean-François Alcover, Jun 05 2017

Keywords

Examples

			4.08137552016889854407110514660961069462641007731860758843485175...
		

Crossrefs

Cf. A114806 (n!9), A143280 (m(2)), A288055 (m(3)), A288091 (m(4)), A288092 (m(5)), A288093 (m(6)), A288094 (m(7)), A288095 (m(8)), this sequence (m(9)).

Programs

  • Magma
    SetDefaultRealField(RealField(105)); (1/9)*Exp(1/9)*(9 + (&+[9^(k/9)*Gamma(k/9, 1/9): k in [1..8]])); // G. C. Greubel, Mar 28 2019
    
  • Mathematica
    m[k_] := (1/k) Exp[1/k] (k + Sum[k^(j/k) (Gamma[j/k] - Gamma[j/k, 1/k]), {j, 1, k - 1}]); RealDigits[m[9], 10, 102][[1]]
  • PARI
    default(realprecision, 105); (1/9)*exp(1/9)*(9 + sum(k=1,8, 9^(k/9)*(gamma(k/9) - incgam(k/9, 1/9)))) \\ G. C. Greubel, Mar 28 2019
    
  • Sage
    numerical_approx((1/9)*exp(1/9)*(9 + sum(9^(k/9)*(gamma(k/9) - gamma_inc(k/9, 1/9)) for k in (1..8))), digits=105) # G. C. Greubel, Mar 28 2019

Formula

m(k) = (1/k)*exp(1/k)*(k + Sum_{j=1..k-1} k^(j/k)*(gamma(j/k) - gamma(j/k, 1/k))) where gamma(x) is the Euler gamma function and gamma(a,x) the incomplete gamma function.

A204659 Numbers n such that n!9-1 is prime.

Original entry on oeis.org

3, 4, 6, 8, 15, 20, 23, 27, 30, 44, 51, 62, 80, 90, 95, 114, 129, 138, 150, 152, 156, 182, 201, 216, 293, 332, 342, 393, 411, 414, 419, 525, 668, 743, 800, 972, 1034, 1266, 1785, 1869, 2777, 3561, 3780, 4106, 4328, 4428, 4556, 4574, 4629, 5001, 5397, 6315
Offset: 1

Views

Author

M. F. Hasler, Jan 17 2012

Keywords

Comments

n!9 = A114806(n).
a(74) > 50000. - Robert Price, Jun 14 2012
a(1)-a(73) are proved prime by the deterministic test of pfgw. - Robert Price, Jun 14 2012

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[1000], PrimeQ[MultiFactorial[#, 9] - 1] & ] (* Robert Price, Apr 19 2019 *)
  • PARI
    for(n=0,9999,isprime(prod(i=0,(n-2)\9,n-9*i)-1)& print1(n","))

Extensions

a(47)-a(73) from Robert Price, Jun 14 2012
Extended b-file adding a(74)-a(81) using data from Ken Davis link by Robert Price, Apr 19 2019

A204660 Numbers n such that n!9+1 is prime.

Original entry on oeis.org

0, 1, 2, 4, 6, 10, 11, 12, 13, 14, 16, 17, 18, 19, 21, 24, 25, 32, 40, 43, 48, 49, 50, 57, 60, 71, 73, 82, 83, 86, 97, 105, 114, 121, 142, 147, 159, 168, 195, 205, 210, 212, 233, 262, 288, 289, 300, 309, 316, 323, 356, 403, 447, 505, 514, 553, 735, 739, 777
Offset: 1

Views

Author

M. F. Hasler, Jan 17 2012

Keywords

Comments

n!9 = A114806(n).
a(107) > 50000. - Robert Price, Jun 18 2012
a(1)-a(106) verified prime by deterministic test of PFGW. - Robert Price, Jun 18 2012

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[0, 1000], PrimeQ[MultiFactorial[#, 9] + 1] & ] (* Robert Price, Apr 19 2019 *)
    Select[Range[0,800],PrimeQ[Times@@Range[#,1,-9]+1]&] (* Harvey P. Dale, Aug 19 2021 *)
  • PARI
    for(n=0,9999,isprime(prod(i=0,(n-2)\9,n-9*i)+1)& print1(n","))

A288327 Decuple factorial, 10-factorial, n!10, n!!!!!!!!!!.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 24, 39, 56, 75, 96, 119, 144, 171, 200, 231, 528, 897, 1344, 1875, 2496, 3213, 4032, 4959, 6000, 7161, 16896, 29601, 45696, 65625, 89856, 118881, 153216, 193401, 240000, 293601, 709632, 1272843, 2010624, 2953125, 4133376
Offset: 0

Views

Author

Robert Price, Jun 07 2017

Keywords

Examples

			a(13) = 13 * 3 * 1 = 39.
		

Crossrefs

Programs

  • GAP
    a:= function(n)
        if n<1 then return 1;
        else return n*a(n-10);
        fi;
      end;
    List([0..50], n-> a(n) ); # G. C. Greubel, Aug 22 2019
  • Magma
    b:=func< n | n le 10 select n else n*Self(n-10) >;
    [1] cat [b(n): n in [1..50]]; // G. C. Greubel, Aug 22 2019
    
  • Maple
    a:= n-> `if`(n<1, 1, n*a(n-10)); seq(a(n), n=0..50); # G. C. Greubel, Aug 22 2019
  • Mathematica
    MultiFactorial[n_, k_]:=If[n<1, 1 ,n*MultiFactorial[n-k, k]];
    Table[MultiFactorial[i, 10], {i, 0, 100}]
    Table[Times@@Range[n,1,-10],{n,0,50}] (* Harvey P. Dale, Aug 11 2019 *)
  • PARI
    a(n)=if(n<1, 1, n*a(n-10));
    vector(40, n, n--; a(n) ) \\ G. C. Greubel, Aug 22 2019
    
  • Sage
    def a(n):
        if (n<1): return 1
        else: return n*a(n-10)
    [a(n) for n in (0..50)] # G. C. Greubel, Aug 22 2019
    

Formula

a(n)=1 for n < 1, otherwise a(n) = n*a(n-10).
Sum_{n>=0} 1/a(n) = A342033. - Amiram Eldar, May 23 2022

A129116 Multifactorial array: A(k,n) = k-tuple factorial of n, for positive n, read by ascending antidiagonals.

Original entry on oeis.org

1, 1, 2, 1, 2, 6, 1, 2, 3, 24, 1, 2, 3, 8, 120, 1, 2, 3, 4, 15, 720, 1, 2, 3, 4, 10, 48, 5040, 1, 2, 3, 4, 5, 18, 105, 40320, 1, 2, 3, 4, 5, 12, 28, 384, 362880, 1, 2, 3, 4, 5, 6, 21, 80, 945, 3628800, 1, 2, 3, 4, 5, 6, 14, 32, 162, 3840, 39916800, 1, 2, 3, 4, 5, 6, 7, 24, 45, 280, 10395, 479001600
Offset: 1

Views

Author

Jonathan Vos Post, May 24 2007

Keywords

Comments

The term "Quintuple factorial numbers" is also used for the sequences A008546, A008548, A052562, A047055, A047056 which have a different definition. The definition given here is the one commonly used. This problem exists for the other rows as well. "n!2" = n!!, "n!3" = n!!!, "n!4" = n!!!!, etcetera. Main diagonal is A[n,n] = n!n = n.
Similar to A114423 (with rows and columns exchanged). - Georg Fischer, Nov 02 2021

Examples

			Table begins:
  k / A(k,n)
  1 | 1 2 6 24 120 720 5040 40320 362880 3628800 ... = A000142.
  2 | 1 2 3  8  15  48  105   384    945    3840 ... = A006882.
  3 | 1 2 3  4  10  18   28    80    162     280 ... = A007661.
  4 | 1 2 3  4   5  12   21    32     45     120 ... = A007662.
  5 | 1 2 3  4   5   6   14    24     36      50 ... = A085157.
  6 | 1 2 3  4   5   6    7    16     27      40 ... = A085158.
		

Crossrefs

Cf. A000142 (n!), A006882 (n!!), A007661 (n!!!), A007662(n!4), A085157 (n!5), A085158 (n!6), A114799 (n!7), A114800 (n!8), A114806 (n!9), A288327 (n!10).
Cf. A114423 (transposed).

Programs

  • Maple
    A:= proc(k,n) option remember; if n >= 1 then n* A(k, n-k) elif n >= 1-k then 1 else 0 fi end: seq(seq(A(1+d-n, n), n=1..d), d=1..16); # Alois P. Heinz, Feb 02 2009
  • Mathematica
    A[k_, n_] := A[k, n] = If[n >= 1, n*A[k, n-k], If[n >= 1-k, 1, 0]]; Table[ A[1+d-n, n], {d, 1, 16}, {n, 1, d}] // Flatten (* Jean-François Alcover, May 27 2016, after Alois P. Heinz *)

Formula

A(k,n) = n!k.
A(k,n) = M(n,k) in A114423. - Georg Fischer, Nov 02 2021

Extensions

Corrected and extended by Alois P. Heinz, Feb 02 2009

A297707 a(n) = Product_{k=1..n-1} n!k, where n!k is k-tuple factorial of n.

Original entry on oeis.org

1, 2, 18, 768, 90000, 44789760, 30494620800, 121762322841600, 393644011735296000, 5618427494400000000000, 107587910030480590233600000, 5951222311476064581656248320000, 176804782652901880753915871232000000, 69819090744423637487544223697731584000000
Offset: 1

Views

Author

Lechoslaw Ratajczak, Jan 03 2018

Keywords

Comments

What is the least n > 2 for which a(n) - prevprime(a(n)) is a composite number? If such a number n exists, it is greater than 250.
The least n for which nextprime(a(n)) - a(n) is a composite number is 158.

Examples

			a(2) = (2!1) = (2*1) = 2;
a(3) = (3!1)*(3!2) = (3*2*1)*(3*1) = 18;
a(4) = (4!1)*(4!2)*(4!3) = (4*3*2*1)*(4*2)*(4*1) = 768;
a(5) = (5!1)*(5!2)*(5!3)*(5!4) = (5*4*3*2*1)*(5*3*1)*(5*2)*(5*1) = 90000.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n<1, 1, n*b(n-k, k)) end:
    a:= n-> mul(b(n, k), k=1..n-1):
    seq(a(n), n=1..20);  # Alois P. Heinz, Dec 02 2018
  • Mathematica
    Array[(#^(# - 1)) Product[k^DivisorSigma[0, # - k], {k, # - 1}] &, 13] (* Michael De Vlieger, Jan 04 2018 *)
  • PARI
    a(n) = (n^(n-1))*prod(k=1, n-1, k^numdiv(n-k)); \\ Michel Marcus, Dec 02 2018

Formula

a(n) = Product_{t=1..n-1} (Product_{k=0..floor((n-1)/t)} (n-t*k)).
a(n) = (n^(n-1))*Product_{k=1..n-1} k^tau(n-k).

A114423 Multifactorial array read by ascending antidiagonals.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 6, 2, 1, 1, 24, 3, 2, 1, 1, 120, 8, 3, 2, 1, 1, 720, 15, 4, 3, 2, 1, 1, 5040, 48, 10, 4, 3, 2, 1, 1, 40320, 105, 18, 5, 4, 3, 2, 1, 1, 362880, 384, 28, 12, 5, 4, 3, 2, 1, 1, 3628800, 945, 80, 21, 6, 5, 4, 3, 2, 1, 1, 39916800, 3840, 162, 32, 14, 6, 5, 4, 3, 2, 1, 1
Offset: 0

Views

Author

Jonathan Vos Post, Feb 12 2006

Keywords

Comments

The columns are n!, n!!, n!!!, ... n!k for n >= 0, k >= 1.

Examples

			Table M begins:
  n / M(n,k)
  0 |   1   1   1   1   1
  1 |   1   1   1   1   1
  2 |   2   2   2   2   2
  3 |   6   3   3   3   3
  4 |  24   8   4   4   4
  5 | 120  15  10   5   5
  6 | 720  48  18  12   6
		

Crossrefs

Cf. A000142 (n!), A006882 (n!!), A007661 (n!!!), A007662(n!4), A085157 (n!5), A085158 (n!6), A114799 (n!7), A114800 (n!8), A114806 (n!9), A288327 (n!10).
Cf. A129116 (transposed).

Programs

  • Mathematica
    NFactorialM[n_, m_] := Block[{k = n, p = Max[1, n]},
         While[k > m, k -= m; p *= k]; p];
    Table[NFactorialM[n - m + 1, m], {n, 1, 11}, {m, 1, n}] // Flatten (* Jean-François Alcover, Aug 01 2021, after Robert G. Wilson v in A007662 *)

Formula

M(n,k) = n!k.
M(n,k) = A129116(k,n). - Georg Fischer, Nov 02 2021

Extensions

Edited by Alois P. Heinz, Apr 24 2025
Showing 1-10 of 11 results. Next