A322445 Smallest positive integer m such that n divides A297707(m).
1, 2, 3, 4, 5, 3, 7, 4, 3, 5, 11, 4, 13, 7, 5, 4, 17, 3, 19, 5, 7, 11, 23, 4, 5, 13, 6, 7, 29, 5, 31, 4, 11, 17, 7, 5, 37, 19, 13, 5, 41, 7, 43, 11, 5, 23, 47, 4, 7, 5, 17, 13, 53, 6, 11, 7, 19, 29, 59, 5, 61, 31, 7, 4, 13
Offset: 1
Keywords
Examples
a(12) = 4 because 12 is not divisible by A297707(1) = 1, A297707(2) = 2*1, A297707(3) = 3*2*1*3*1, and is divisible by A297707(4) = 4*3*2*1*4*2*4*1.
Links
- J. Sondow and E. W. Weisstein, MathWorld: Smarandache Function
Programs
-
Mathematica
f[n_] := n^(n - 1) * Product[k^DivisorSigma[0, n - k], {k, n - 1}]; a[n_] := Module[{k = 1}, While[! Divisible[f[k], n], k++]; k]; Array[a, 60] (* Amiram Eldar, Dec 08 2018 *)
-
PARI
f(n) = (n^(n-1))*prod(k=1, n-1, k^numdiv(n-k)); \\ A297707 a(n) = {my(k=1); while (f(k) % n, k++); k;} \\ Michel Marcus, Dec 09 2018
Comments