cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114833 Each term is previous term plus ceiling of root mean square of two previous terms.

Original entry on oeis.org

0, 1, 2, 4, 8, 15, 28, 51, 93, 168, 304, 550, 995, 1799, 3253, 5882, 10635, 19229, 34767, 62861, 113656, 205497, 371550, 671782, 1214618, 2196094, 3970654, 7179153, 12980288, 23469047, 42433278, 76721609, 138716724, 250807167, 453472612, 819902445, 1482426947, 2680306255, 4846135343
Offset: 0

Views

Author

Jonathan Vos Post, Feb 19 2006

Keywords

Examples

			a(3) = 2 + ceiling[sqrt[(1^2 + 2^2)/2]] = 2 + ceiling[Sqrt[5/2]] = 2 + 2 = 4.
a(4) = 4 + ceiling[sqrt[(2^2 + 4^2)/2]] = 4 + ceiling[Sqrt[20/2]] = 4 + 4 = 8.
a(5) = 8 + ceiling[sqrt[(4^2 + 8^2)/2]] = 8 + ceiling[Sqrt[80/2]] = 8 + 7 = 15.
a(6) = 15 + ceiling[sqrt[(8^2 + 15^2)/2]] = 15 + ceiling[Sqrt[289/2]] = 15 + 13 = 28.
a(7) = 28 + ceiling[sqrt[(15^2 + 28^2)/2]] = 28 + ceiling[Sqrt[1009/2]] = 28 + 23 = 51.
a(8) = 51 + ceiling[sqrt[(28^2 + 51^2)/2]] = 51 + ceiling[Sqrt[3385/2]] = 51 + 42 = 93.
a(9) = 93 + ceiling[sqrt[(51^2 + 93^2)/2]] = 93 + ceiling[Sqrt[11250/2]] = 93 + 75 = 168 [the 75 is an exact value].
a(10) = 168 + ceiling[sqrt[(93^2 + 168^2)/2]] = 168 + ceiling[Sqrt[36873/2]] = 168 + 136 = 304.
a(11) = 304 + ceiling[sqrt[(168^2 + 304^2)/2]] = 304 + ceiling[Sqrt[120640/2]] = 304 + 246 = 550.
a(12) = 550 + ceiling[sqrt[(304^2 + 550^2)/2]] = 550 + ceiling[Sqrt[394916/2]] = 550 + 445 = 995.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = a[n - 1] + Ceiling[ Sqrt[(a[n - 1]^2 + a[n - 2]^2)/2]]; a[0] = 0; a[1] = 1; Array[a, 39, 0] (* Robert G. Wilson v, Jun 22 2014 *)
    nxt[{a_,b_}]:={b,b+Ceiling[Sqrt[(a^2+b^2)/2]]}; Transpose[NestList[nxt,{0,1},40]][[1]] (* Harvey P. Dale, May 12 2015 *)

Formula

a(1) = 1, a(2) = 2, for n>2: a(n+1) = a(n) + ceiling(RMS[a(n),a(n-1)]). a(n+1) = a(n) + ceiling[Sqrt[[a(n)^2]+[a(n-1)^2]/2]].
It can easily be proved via induction that a(n)<=2^n. On the other hand we can derive a lower bound: We derive another sequence of the form b(n) = a*c^n, where "a" and "c" are real numbers. If b(1)<=a(1) and b(2)<=a(2) and a(n+1) = a(n)+Ceiling(Sqrt((a(n)^2+a(n-1)^2)/2)) >= b(n)+Sqrt((b(n)^2+b(n-1)^2)/2) >= b(n+1) then, via induction we can safely conclude that a(n)>=b(n). With this method we can derive that a(n) >= 1.80805^(n-1) (where 1.80... is the positive solution of x^2 = x+Sqrt((x^2+1)/2)). Hence we have 1.80805 < a(n)^(1/n) < 2. Can these bounds be improved? - Stefan Steinerberger, Feb 21 2006

Extensions

a(0) and a(13) onward from Robert G. Wilson v, Jun 22 2014