A114841 Indices of Fibonacci numbers with 3 distinct prime factors.
15, 16, 18, 21, 33, 35, 37, 38, 39, 46, 49, 51, 58, 62, 65, 67, 82, 86, 103, 106, 119, 122, 125, 139, 142, 145, 158, 166, 179, 181, 226, 233, 235, 241, 257, 263, 274, 281, 299, 301, 317, 337, 383, 389, 419, 457, 463, 473, 479, 491, 521, 541, 557, 619, 643, 659, 706, 719, 739, 751, 857, 863, 877, 881, 883, 911, 947, 983, 1021, 1033, 1061, 1069, 1109, 1117, 1123, 1181, 1187, 1193, 1213, 1226
Offset: 1
Keywords
Examples
a(1) = 15 because 15th Fibonacci number has 3 distinct prime factors (i.e., 610 = 2 * 5 * 61).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..83
- Blair Kelly, Fibonacci and Lucas Factorizations.
- Prapanpong Pongsriiam, Fibonacci and Lucas Numbers which have Exactly Three Prime Factors and Some Unique Properties of F18 and L18, Fibonacci Quart. 57 (2019), no. 5, 130-144.
Crossrefs
Programs
-
Magma
[n: n in [1..350] |(#(PrimeDivisors(Fibonacci(n)))) eq 3]; // Vincenzo Librandi, Mar 26 2018
-
Maple
with(numtheory): with(combinat): a:=n->`if`(nops(factorset(fibonacci(n)))=3,n,NULL); [seq(a(n),n=1..300)]; # Muniru A Asiru, Mar 25 2018
-
Mathematica
Select[Range[500], PrimeNu[Fibonacci[#]]==3 &] (* Vincenzo Librandi, Mar 26 2018 *)
-
PARI
n=1;while(n<340,if(omega(fibonacci(n))==3,print1(n,", "));n++)
Extensions
More terms from Ryan Propper, Apr 26 2006
a(57)-a(80) from Max Alekseyev, Aug 18 2013