cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A303217 A(n,k) is the n-th index of a Fibonacci number with exactly k distinct prime factors; square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

3, 8, 4, 15, 9, 5, 20, 16, 10, 6, 30, 24, 18, 12, 7, 40, 36, 27, 21, 14, 11, 70, 48, 42, 28, 33, 19, 13, 60, 81, 54, 44, 32, 35, 22, 17, 80, 72, 104, 56, 45, 52, 37, 25, 23, 90, 84, 110, 105, 64, 50, 55, 38, 26, 29, 140, 126, 88, 112, 136, 78, 57, 74, 39, 31, 43
Offset: 1

Views

Author

Alois P. Heinz, Apr 19 2018

Keywords

Examples

			Square array A(n,k) begins:
   3,  8, 15, 20, 30,  40,  70,  60,  80,  90, ...
   4,  9, 16, 24, 36,  48,  81,  72,  84, 126, ...
   5, 10, 18, 27, 42,  54, 104, 110,  88, 165, ...
   6, 12, 21, 28, 44,  56, 105, 112,  96, 256, ...
   7, 14, 33, 32, 45,  64, 136, 114, 100, 258, ...
  11, 19, 35, 52, 50,  78, 148, 128, 108, 266, ...
  13, 22, 37, 55, 57,  92, 152, 130, 132, 296, ...
  17, 25, 38, 74, 63,  95, 164, 135, 138, 304, ...
  23, 26, 39, 77, 66,  99, 182, 147, 156, 322, ...
  29, 31, 46, 85, 68, 102, 186, 154, 184, 369, ...
		

Crossrefs

Programs

  • Maple
    F:= combinat[fibonacci]: with(numtheory):
    A:= proc() local h, p, q; p, q:= proc() [] end, 2;
          proc(n, k)
            while nops(p(k))
    				
  • Mathematica
    nmax = 12; maxIndex = 200;
    nu[n_] := nu[n] = PrimeNu[Fibonacci[n]];
    col[k_] := Select[Range[maxIndex], nu[#] == k&];
    T = Array[col, nmax];
    A[n_, k_] := T[[k, n]];
    Table[A[n-k+1, k], {n, 1, nmax}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jan 04 2020 *)

Formula

A000045(A(n,k)) = A303218(n,k).
A001221(A000045(A(n,k))) = k.

A114826 Indices of Fibonacci numbers with 10 distinct prime factors.

Original entry on oeis.org

90, 126, 165, 256, 258, 266, 296, 304, 322, 369, 375, 376, 424, 428, 429, 474, 484, 494, 506, 574, 578, 589, 633, 646, 652, 658, 663, 664, 668, 669, 670, 687, 703, 705, 716, 724, 742, 754, 779, 782, 807, 845, 875, 892, 906, 909, 921, 946, 956, 964, 986, 1004, 1054, 1075, 1084, 1119, 1126, 1132, 1149, 1169, 1171, 1214, 1222, 1227
Offset: 1

Views

Author

Shyam Sunder Gupta, Feb 19 2006

Keywords

Examples

			a(1)=90 because the 90th Fibonacci number (i.e., 2880067194370816120) consists of 10 distinct prime factors (i.e., 2^3 * 5 * 11 * 17 * 19 * 31 * 61 * 181 * 541 * 109441).
		

Crossrefs

Column k=10 of A303217.

Programs

  • PARI
    n=1;while(n<305,if(omega(fibonacci(n))==10,print1(n,", "));n++)

Extensions

More terms from Ryan Propper, Apr 26 2006
a(52)-a(64) from Max Alekseyev, Aug 18 2013

A137563 Fibonacci numbers with three distinct prime divisors.

Original entry on oeis.org

610, 987, 2584, 10946, 3524578, 9227465, 24157817, 39088169, 63245986, 1836311903, 7778742049, 20365011074, 591286729879, 4052739537881, 17167680177565, 44945570212853, 61305790721611591, 420196140727489673, 1500520536206896083277, 6356306993006846248183
Offset: 1

Views

Author

Parthasarathy Nambi, Apr 25 2008

Keywords

Examples

			The distinct prime divisors of the Fibonacci number 610 are 2, 5 and 61.
The distinct prime divisors of the Fibonacci number 44945570212853 are 269, 116849 and 1429913.
		

Crossrefs

Intersection of A033992 and A000045. - Michel Marcus, Mar 24 2018
Column k=3 of A303218.

Programs

  • GAP
    P1:=List([1..110],n->Fibonacci(n));;
    P2:=List([1..Length(P1)],i->Filtered(DivisorsInt(P1[i]),IsPrime));;
    a:=List(Filtered([1..Length(P2)],i->Length(P2[i])=3),j->P1[j]); # Muniru A Asiru, Mar 25 2018
  • Maple
    with(numtheory): with(combinat): a:=proc(n) if nops(factorset(fibonacci(n)))= 3 then fibonacci(n) else end if end proc: seq(a(n),n=1..110); # Emeric Deutsch, May 18 2008
  • Mathematica
    Select[Array[Fibonacci, 120], PrimeNu@ # == 3 &] (* Michael De Vlieger, Apr 10 2018 *)
  • PARI
    lista(nn) = for (n=1, nn, if (omega(f=fibonacci(n))==3, print1(f, ", "))); \\ Michel Marcus, Mar 24 2018
    

Formula

a(n) = A000045(A114841(n)). - Michel Marcus, Mar 24 2018

Extensions

More terms from Emeric Deutsch, May 18 2008

A114837 Indices of Fibonacci numbers with 8 distinct prime factors.

Original entry on oeis.org

60, 72, 110, 112, 114, 128, 130, 135, 147, 154, 170, 171, 174, 217, 225, 231, 236, 238, 275, 279, 282, 290, 309, 316, 338, 355, 366, 374, 425, 436, 442, 452, 471, 481, 524, 538, 548, 553, 575, 642, 649, 694, 796, 801, 818, 833, 838, 847, 849, 851, 886, 889, 922, 923, 926, 939, 949, 958, 963, 965, 971, 979, 1037, 1041, 1077, 1079, 1094, 1111, 1127, 1137, 1141, 1153, 1154, 1189, 1211
Offset: 1

Views

Author

Shyam Sunder Gupta, Feb 19 2006

Keywords

Examples

			a(1)=60 because the 60th Fibonacci number consists of 8 distinct prime factors (i.e., 1548008755920 = 2^4 x 3^2 x 5 x 11 x 31 x 41 x 61 x 2521).
		

Crossrefs

Column k=8 of A303217.

Programs

  • PARI
    n=1;while(n<370,if(omega(fibonacci(n))==8,print1(n,", "));n++)

Extensions

More terms from Ryan Propper, Apr 26 2006
a(53)-a(75) from Max Alekseyev, Aug 18 2013

A114838 Indices of Fibonacci numbers with 7 distinct prime factors.

Original entry on oeis.org

70, 81, 104, 105, 136, 148, 152, 164, 182, 186, 195, 207, 212, 244, 246, 254, 259, 289, 291, 292, 298, 305, 319, 326, 332, 344, 365, 367, 403, 404, 423, 445, 447, 451, 458, 478, 489, 511, 517, 519, 526, 533, 537, 543, 554, 565, 566, 597, 605, 679, 681, 685, 698, 699, 701, 721, 723, 725, 737, 745, 746, 749, 753, 758, 766, 767, 785, 813, 817, 831, 842, 871, 879, 901, 905, 914, 955, 967, 973, 985, 998, 1006, 1007, 1009, 1043, 1046, 1051, 1133, 1139, 1159, 1167, 1174, 1175, 1177, 1191, 1199, 1207, 1219
Offset: 1

Views

Author

Shyam Sunder Gupta, Feb 19 2006

Keywords

Examples

			a(1)=70 because the 70th Fibonacci number consists of 7 distinct prime factors (i.e., 190392490709135 = 5 x 11 x 13 x 29 x 71 x 911 x 141961).
		

Crossrefs

Column k=7 of A303217.

Programs

  • Mathematica
    Select[Range[1220],PrimeNu[Fibonacci[#]]==7&] (* Harvey P. Dale, Sep 18 2020 *)
  • PARI
    n=1;while(n<310,if(omega(fibonacci(n))==7,print1(n,", "));n++)

Extensions

More terms from Ryan Propper, Apr 26 2006
a(53)-a(98) from Max Alekseyev, Aug 18 2013

A114839 Indices of Fibonacci numbers with 6 distinct prime factors.

Original entry on oeis.org

40, 48, 54, 56, 64, 78, 92, 95, 99, 102, 116, 117, 129, 133, 155, 159, 175, 177, 188, 194, 205, 206, 219, 237, 245, 265, 278, 314, 323, 327, 339, 341, 343, 346, 356, 358, 361, 362, 394, 407, 411, 417, 422, 427, 437, 446, 454, 466, 482, 502, 503, 505, 514, 515, 527, 535, 542, 545, 551, 562, 573, 577, 583, 593, 607, 614, 622, 623, 625, 634, 655, 662, 667, 674, 713, 727, 731, 769, 781, 789, 791, 803, 809, 821, 835, 893, 917, 919, 974, 977, 982, 993, 995, 1013, 1039, 1047, 1057, 1081, 1097, 1103, 1121, 1138, 1151, 1165, 1172, 1202, 1203
Offset: 1

Views

Author

Shyam Sunder Gupta, Feb 19 2006

Keywords

Comments

Numbers n such that A000045(n) is in A046306.

Examples

			a(1) = 40 because 40th Fibonacci number consists of 6 distinct prime factors (i.e., 102334155 = 3 x 5 x 7 x 11 x 41 x 2161).
a(31) = 341 because F(341)= 89 * 557 * 2417 * 761227665342913 * 197907695243868721 * 4558282384863830955384586674337 has exactly 6 prime factors.
		

Crossrefs

Column k=6 of A303217.

Programs

  • PARI
    n=1;while(n<330,if(omega(fibonacci(n))==6,print1(n,", "));n++)

Extensions

More terms from Jonathan Vos Post, Mar 22 2006
Corrected by Ryan Propper, Apr 26 2006
a(55)-a(107) from Max Alekseyev, Aug 18 2013

A114840 Indices of Fibonacci numbers with 5 distinct prime factors.

Original entry on oeis.org

30, 36, 42, 44, 45, 50, 57, 63, 66, 68, 69, 75, 76, 98, 111, 118, 124, 134, 141, 153, 169, 172, 183, 185, 201, 202, 203, 213, 218, 229, 247, 253, 267, 302, 303, 329, 335, 347, 363, 371, 373, 377, 381, 382, 386, 395, 398, 413, 415, 439, 443, 461
Offset: 1

Views

Author

Shyam Sunder Gupta, Feb 19 2006

Keywords

Examples

			a(1)=30 because 30th Fibonacci number consists of 5 distinct prime factors (i.e., 832040 = 2^3 * 5 * 11 * 31 * 61).
		

Crossrefs

Column k=5 of A303217.

Programs

  • PARI
    n=1;while(n<305,if(omega(fibonacci(n))==5,print1(n,", "));n++)

Formula

{n: A022307(n)=5}. - R. J. Mathar, Nov 29 2015

Extensions

More terms from Ryan Propper, Apr 26 2006
a(56)-a(106) from Max Alekseyev, Aug 18 2013

A114842 Indices of Fibonacci numbers with 2 distinct prime factors.

Original entry on oeis.org

8, 9, 10, 12, 14, 19, 22, 25, 26, 31, 34, 41, 53, 59, 61, 71, 73, 79, 89, 94, 101, 107, 109, 113, 121, 127, 151, 167, 173, 191, 193, 199, 227, 251, 271, 277, 293, 331, 353, 397, 401, 467, 587, 599, 601, 613, 631, 653, 743, 991, 1091, 1223, 1373
Offset: 1

Views

Author

Shyam Sunder Gupta, Feb 19 2006

Keywords

Comments

A072381 is subsequence, since the only square Fibonacci numbers are 1 and 144 which are not squares of primes. - Charles R Greathouse IV, Sep 24 2012

Examples

			a(1) = 8 because 8th Fibonacci number consists of 2 distinct prime factors (i.e. 21 = 3*7).
25 is in the sequence because Fibonacci(25) = 75025 = 5^2 * 3001 consists of 2 distinct prime factors.
		

Crossrefs

Column k=2 of A303217.

Programs

  • PARI
    n=1;while(n<355,if(omega(fibonacci(n))==2,print1(n,", "));n++)

Extensions

a(40)-a(50) from Donovan Johnson, Sep 27 2008
a(51)-a(52) from Max Alekseyev, Aug 18 2013
a(53) from Amiram Eldar, Oct 14 2019

A114843 Indices of Fibonacci numbers with 4 distinct prime factors.

Original entry on oeis.org

20, 24, 27, 28, 32, 52, 55, 74, 77, 85, 87, 91, 93, 97, 115, 123, 143, 146, 149, 157, 161, 163, 178, 187, 197, 209, 211, 214, 215, 221, 223, 239, 242, 249, 262, 269, 283, 287, 307, 311, 313, 321, 334, 349, 379, 391, 393, 409, 421, 453, 487, 493, 499, 523, 581, 586, 617, 641, 647, 677, 691, 707, 709, 787, 794, 811, 823, 839, 853, 859, 887, 907, 913, 929, 941, 953, 1031, 1049, 1063, 1093, 1229
Offset: 1

Views

Author

Shyam Sunder Gupta, Feb 19 2006

Keywords

Examples

			a(1)=20 because the 20th Fibonacci number consists of 4 distinct prime factors (i.e., 6765 = 3 x 5 x 11 x 41).
		

Crossrefs

Column k=4 of A303217.

Programs

  • PARI
    n=1;while(n<350,if(omega(fibonacci(n))==4,print1(n,", "));n++)

Extensions

More terms from Ryan Propper, Apr 26 2006
a(56)-a(81) from Max Alekseyev, Aug 18 2013

A117551 Indices of Fibonacci numbers with 15 distinct prime factors.

Original entry on oeis.org

180, 210, 276, 280, 288, 312, 320, 340, 342, 416, 464, 476, 486, 516, 558, 564, 651, 665, 676, 708, 730, 735, 752, 776, 783, 837, 848, 856, 890, 992, 999, 1030, 1034, 1038, 1065, 1068, 1071, 1095, 1125, 1130, 1192, 1212
Offset: 1

Views

Author

Ryan Propper, Apr 26 2006

Keywords

Examples

			F(180) = 2^4 * 3^3 * 5 * 11 * 17 * 19 * 31 * 41 * 61 * 107 * 181 * 541 * 2521 * 109441 * 10783342081 has 15 distinct prime factors, so 180 is in the sequence.
		

Crossrefs

Column k=15 of A303217.

Programs

  • PARI
    isok(n) = (omega(fibonacci(n)) == 15) \\ Michel Marcus, Jun 28 2013

Extensions

a(32)-a(42) from Max Alekseyev, Aug 18 2013
Showing 1-10 of 12 results. Next