cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A303217 A(n,k) is the n-th index of a Fibonacci number with exactly k distinct prime factors; square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

3, 8, 4, 15, 9, 5, 20, 16, 10, 6, 30, 24, 18, 12, 7, 40, 36, 27, 21, 14, 11, 70, 48, 42, 28, 33, 19, 13, 60, 81, 54, 44, 32, 35, 22, 17, 80, 72, 104, 56, 45, 52, 37, 25, 23, 90, 84, 110, 105, 64, 50, 55, 38, 26, 29, 140, 126, 88, 112, 136, 78, 57, 74, 39, 31, 43
Offset: 1

Views

Author

Alois P. Heinz, Apr 19 2018

Keywords

Examples

			Square array A(n,k) begins:
   3,  8, 15, 20, 30,  40,  70,  60,  80,  90, ...
   4,  9, 16, 24, 36,  48,  81,  72,  84, 126, ...
   5, 10, 18, 27, 42,  54, 104, 110,  88, 165, ...
   6, 12, 21, 28, 44,  56, 105, 112,  96, 256, ...
   7, 14, 33, 32, 45,  64, 136, 114, 100, 258, ...
  11, 19, 35, 52, 50,  78, 148, 128, 108, 266, ...
  13, 22, 37, 55, 57,  92, 152, 130, 132, 296, ...
  17, 25, 38, 74, 63,  95, 164, 135, 138, 304, ...
  23, 26, 39, 77, 66,  99, 182, 147, 156, 322, ...
  29, 31, 46, 85, 68, 102, 186, 154, 184, 369, ...
		

Crossrefs

Programs

  • Maple
    F:= combinat[fibonacci]: with(numtheory):
    A:= proc() local h, p, q; p, q:= proc() [] end, 2;
          proc(n, k)
            while nops(p(k))
    				
  • Mathematica
    nmax = 12; maxIndex = 200;
    nu[n_] := nu[n] = PrimeNu[Fibonacci[n]];
    col[k_] := Select[Range[maxIndex], nu[#] == k&];
    T = Array[col, nmax];
    A[n_, k_] := T[[k, n]];
    Table[A[n-k+1, k], {n, 1, nmax}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jan 04 2020 *)

Formula

A000045(A(n,k)) = A303218(n,k).
A001221(A000045(A(n,k))) = k.

A114841 Indices of Fibonacci numbers with 3 distinct prime factors.

Original entry on oeis.org

15, 16, 18, 21, 33, 35, 37, 38, 39, 46, 49, 51, 58, 62, 65, 67, 82, 86, 103, 106, 119, 122, 125, 139, 142, 145, 158, 166, 179, 181, 226, 233, 235, 241, 257, 263, 274, 281, 299, 301, 317, 337, 383, 389, 419, 457, 463, 473, 479, 491, 521, 541, 557, 619, 643, 659, 706, 719, 739, 751, 857, 863, 877, 881, 883, 911, 947, 983, 1021, 1033, 1061, 1069, 1109, 1117, 1123, 1181, 1187, 1193, 1213, 1226
Offset: 1

Views

Author

Shyam Sunder Gupta, Feb 19 2006

Keywords

Examples

			a(1) = 15 because 15th Fibonacci number has 3 distinct prime factors (i.e., 610 = 2 * 5 * 61).
		

Crossrefs

Programs

  • Magma
    [n: n in [1..350] |(#(PrimeDivisors(Fibonacci(n)))) eq 3]; // Vincenzo Librandi, Mar 26 2018
  • Maple
    with(numtheory): with(combinat):
    a:=n->`if`(nops(factorset(fibonacci(n)))=3,n,NULL); [seq(a(n),n=1..300)]; # Muniru A Asiru, Mar 25 2018
  • Mathematica
    Select[Range[500], PrimeNu[Fibonacci[#]]==3 &] (* Vincenzo Librandi, Mar 26 2018 *)
  • PARI
    n=1;while(n<340,if(omega(fibonacci(n))==3,print1(n,", "));n++)
    

Extensions

More terms from Ryan Propper, Apr 26 2006
a(57)-a(80) from Max Alekseyev, Aug 18 2013
Showing 1-2 of 2 results.