cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A072381 Numbers m such that Fibonacci(m) is a semiprime.

Original entry on oeis.org

8, 9, 10, 14, 19, 22, 26, 31, 34, 41, 53, 59, 61, 71, 73, 79, 89, 94, 101, 107, 109, 113, 121, 127, 151, 167, 173, 191, 193, 199, 227, 251, 271, 277, 293, 331, 353, 397, 401, 467, 587, 599, 601, 613, 631, 653, 743, 991, 1091, 1223, 1373, 1487
Offset: 1

Views

Author

Shyam Sunder Gupta, Jul 20 2002

Keywords

Comments

Note that there are two cases: (1) n is 2p, in which case the semiprime is Fibonacci(p)*Lucas(p) for some prime p, or (2) n is a power of a prime p^k for k > 0. In the first case, the primes p are in sequence A080327. In the second case, it appears that k=1 except for n = 8, 9 and 121. - T. D. Noe, Sep 23 2005
The associated sequence of Fibonacci numbers contains no squares, since the only Fibonacci numbers which are square are 1 and 144. Consequently this is a subsequence of A114842. - Charles R Greathouse IV, Sep 24 2012
Sequence continues as 1543?, 1709, 1741?, 1759, 1801?, 1889, 1987, ..., where ? marks uncertain terms. - Max Alekseyev, Jul 10 2016

Examples

			a(4) = 14 because the 14th Fibonacci number 377 = 13*29 is a semiprime.
		

Crossrefs

Cf. A053409, A085726 (n such that n-th Lucas number is a semiprime).
Column k=2 of A303215.

Programs

  • Mathematica
    Select[Range[200], Plus@@Last/@FactorInteger[Fibonacci[ # ]] == 2&] (Noe)
    Select[Range[1500],PrimeOmega[Fibonacci[#]]==2&] (* Harvey P. Dale, Dec 13 2020 *)
  • PARI
    for(n=2,9999,bigomega(fibonacci(n))==2&&print1(n",")) \\ - M. F. Hasler, Oct 31 2012
    
  • PARI
    issemi(n)=bigomega(n)==2
    is(n)=if(n%2, my(p); if(issquare(n,&p), isprime(p) && isprime(fibonacci(p)) && isprime(fibonacci(n)/fibonacci(p)), isprime(n) && issemi(fibonacci(n))), (isprime(n/2) && isprime(fibonacci(n/2)) && isprime(fibonacci(n)/fibonacci(n/2))) || n==8) \\ Charles R Greathouse IV, Oct 06 2016

Extensions

More terms from Don Reble, Jul 31 2002
a(49)-a(50) from Max Alekseyev, Aug 18 2013
a(51)-a(52) from Max Alekseyev, Jul 10 2016

A303217 A(n,k) is the n-th index of a Fibonacci number with exactly k distinct prime factors; square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

3, 8, 4, 15, 9, 5, 20, 16, 10, 6, 30, 24, 18, 12, 7, 40, 36, 27, 21, 14, 11, 70, 48, 42, 28, 33, 19, 13, 60, 81, 54, 44, 32, 35, 22, 17, 80, 72, 104, 56, 45, 52, 37, 25, 23, 90, 84, 110, 105, 64, 50, 55, 38, 26, 29, 140, 126, 88, 112, 136, 78, 57, 74, 39, 31, 43
Offset: 1

Views

Author

Alois P. Heinz, Apr 19 2018

Keywords

Examples

			Square array A(n,k) begins:
   3,  8, 15, 20, 30,  40,  70,  60,  80,  90, ...
   4,  9, 16, 24, 36,  48,  81,  72,  84, 126, ...
   5, 10, 18, 27, 42,  54, 104, 110,  88, 165, ...
   6, 12, 21, 28, 44,  56, 105, 112,  96, 256, ...
   7, 14, 33, 32, 45,  64, 136, 114, 100, 258, ...
  11, 19, 35, 52, 50,  78, 148, 128, 108, 266, ...
  13, 22, 37, 55, 57,  92, 152, 130, 132, 296, ...
  17, 25, 38, 74, 63,  95, 164, 135, 138, 304, ...
  23, 26, 39, 77, 66,  99, 182, 147, 156, 322, ...
  29, 31, 46, 85, 68, 102, 186, 154, 184, 369, ...
		

Crossrefs

Programs

  • Maple
    F:= combinat[fibonacci]: with(numtheory):
    A:= proc() local h, p, q; p, q:= proc() [] end, 2;
          proc(n, k)
            while nops(p(k))
    				
  • Mathematica
    nmax = 12; maxIndex = 200;
    nu[n_] := nu[n] = PrimeNu[Fibonacci[n]];
    col[k_] := Select[Range[maxIndex], nu[#] == k&];
    T = Array[col, nmax];
    A[n_, k_] := T[[k, n]];
    Table[A[n-k+1, k], {n, 1, nmax}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jan 04 2020 *)

Formula

A000045(A(n,k)) = A303218(n,k).
A001221(A000045(A(n,k))) = k.

A227875 Fibonacci numbers which are perfect powers.

Original entry on oeis.org

0, 1, 8, 144
Offset: 1

Views

Author

Jean-François Alcover, Oct 25 2013

Keywords

Comments

Also, Fibonacci numbers which are products of Fibonacci numbers (each greater than 1 when the product is greater than 1 - see A235383). - Rick L. Shepherd, Feb 19 2014
The terms of the subsequence (1, 8, 144) are the Fibonacci numbers that are powerful numbers. - Robert C. Lyons, Jul 12 2016
Also Fibonacci numbers without any primitive divisors. See [Heuberger & Wagner]. - Michel Marcus, Aug 21 2016
It was proved (Bugeaud, Mignotte, and Siksek, 2006, p. 971) that the only perfect powers among the Fibonacci numbers and Lucas numbers are {0, 1, 8, 144} and {1, 4}, respectively. - Daniel Forgues, Apr 09 2018

Crossrefs

Programs

  • Mathematica
    perfectPowerQ[0] = True; perfectPowerQ[1] = True; perfectPowerQ[n_] := GCD @@ FactorInteger[n][[All, 2]] > 1; Union[Select[Fibonacci /@ Range[0, 20], perfectPowerQ]]
Showing 1-3 of 3 results.