A235383
Fibonacci numbers that are the product of other Fibonacci numbers.
Original entry on oeis.org
The Fibonacci number 8 is in the sequence because 8=2*2*2, and 2 is a Fibonacci number that is not equal to 8. The Fibonacci number 144 is in the sequence because 144=3*3*2*2*2*2, and both 2 and 3 are Fibonacci numbers that are not equal to 144.
- Yann Bugeaud, Maurice Mignotte, and Samir Siksek, Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers, Annals of Mathematics, 163 (2006), pp. 969-1018.
- Arpan Saha and Karthik C S, A few equivalences of Wall-Sun-Sun prime conjecture, arXiv:1102.1636 [math.NT], 2011.
- Wikipedia, Carmichael's theorem.
A370071
Fibonacci numbers such that some permutation of their digits is a perfect power.
Original entry on oeis.org
0, 1, 8, 144, 610, 46368, 1346269, 14930352, 63245986, 165580141, 267914296, 2971215073, 4807526976, 7778742049, 12586269025, 139583862445, 365435296162, 591286729879, 956722026041, 1548008755920, 2504730781961, 4052739537881, 6557470319842, 17167680177565, 27777890035288, 190392490709135
Offset: 1
46368 is a term because it is a Fibonacci number whose digits can be permuted to 36864 = 192^2 (and also to 86436 = 294^2).
-
isok(f) = my(d=digits(f), n=#d); for (i=1, n!, my(p=numtoperm(n, i), dd=vector(#d, i, d[p[i]])); if (ispower(fromdigits(dd)), return(1)););
lista(nn) = my(list = List([0, 1])); for (n=3, nn, my(f=fibonacci(n)); if (isok(f), listput(list, f));); Vec(list); \\ Michel Marcus, Feb 17 2024
-
from itertools import count, islice
from sympy import integer_log
def A370071_gen(): # generator of terms
a, b = 1, 2
yield from (0,1)
while True:
s = sorted(str(b))
l = len(s)
m = int(''.join(s[::-1]))
u = int(''.join(s))
for i in count(2):
if i**2 > m:
break
for j in count(max(2,integer_log(u,i)[0])):
if (k:=i**j) > m:
break
t = sorted(str(k))
if ['0']*(l-len(t))+t == s:
yield b
break
else:
continue
if k<=m:
break
a, b = b, a+b
A370071_list = list(islice(A370071_gen(),20)) # Chai Wah Wu, Mar 27 2024
A081979
Smallest Fibonacci number with 2n divisors, or 0 if no such number exists.
Original entry on oeis.org
2, 8, 75025, 610
Offset: 1
a(2) = 8 because 8 is the smallest Fibonacci number with 4 divisors (1,2,4,8).
A371588
Smallest Fibonacci number > 1 such that some permutation of its digits is a perfect n-th power.
Original entry on oeis.org
2, 144, 8, 610, 5358359254990966640871840, 68330027629092351019822533679447, 15156039800290547036315704478931467953361427680642, 23770696554372451866815101694984845480039225387896643963981, 119447720249892581203851665820676436622934188700177088360
Offset: 1
a(1) = 2 since 2 = 2^1.
a(2) = 144 since 144 = 12^2.
a(3) = 8 since 8 = 2^3.
a(4) = 610 since 016 = 2^4.
a(5) = 5358359254990966640871840 since 0735948608251696955804943 = 59343^5
a(6) = 68330027629092351019822533679447 since 00059398947526192142327360782336 = 62464^6.
-
from itertools import count
from sympy import integer_nthroot
def A371588(n):
a, b = 1, 2
while True:
s = sorted(str(b))
l = len(s)
m = int(''.join(s[::-1]))
u = int(''.join(s))
for i in count(max(2,integer_nthroot(u,n)[0])):
if (k:=i**n) > m:
break
t = sorted(str(k))
if ['0']*(l-len(t))+t == s:
return b
break
a, b = b, a+b
A371589
Smallest number m > 1 such that some permutation of the digits of m^n is a Fibonacci number.
Original entry on oeis.org
2, 12, 2, 19002, 433153, 472133, 10064513, 61054259, 67878079, 8152101, 46077414, 11395185, 28556455, 11730986, 179311318, 1542839498, 443163383, 2426412518, 433059953, 443302473, 2654438078, 2764480203, 5945916934
Offset: 1
a(4) = 19002 since 19002^4 = 130375880664608016 and a permutation of its digits results in 160500643816367088, a Fibonacci number.
-
from itertools import count
from sympy import integer_nthroot
def A371589(n):
a, b = 1, 2
while True:
s = sorted(str(b))
m = int(''.join(s[::-1]))
u = int(''.join(s))
for i in count(max(2,integer_nthroot(u,n)[0])):
if (k:=i**n) > m:
break
t = sorted(str(k))
if t == s:
return i
break
a, b = b, a+b
A307991
Fibonacci numbers of the form k^2 - k - 1 with integer k.
Original entry on oeis.org
89 is in the sequence since 89 = 10^2 - 10 - 1 or equivalently 1/89 = 1/10^2 + 1/10^3 + 2/10^4 + 3/10^5 + 5/10^6 + ... This is why the first digits of the decimal expansion of 1/89 = 0.011235... are the first terms of the Fibonacci sequence.
- Fenton Stancliff, A curious property of a_11, Scripta Math., Vol. 19 (1953), p. 126.
Showing 1-6 of 6 results.
Comments