cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A114941 Decimal expansion of the infinite sum Sum_{k>=1} cos(k)/k!.

Original entry on oeis.org

1, 4, 3, 8, 3, 5, 6, 4, 3, 7, 9, 1, 6, 4, 0, 3, 2, 5, 9, 0, 6, 6, 4, 7, 3, 4, 3, 9, 6, 7, 9, 0, 2, 0, 2, 8, 0, 3, 0, 4, 5, 9, 0, 9, 3, 5, 8, 5, 5, 3, 0, 0, 3, 2, 3, 9, 3, 2, 0, 6, 1, 3, 0, 0, 6, 5, 7, 4, 5, 9, 9, 8, 7, 4, 2, 3, 6, 2, 1, 8, 5, 1, 6, 2, 6, 3, 0, 1, 5, 1, 5, 1, 6, 9, 0, 2, 9, 3, 8, 0, 0, 3, 1, 1
Offset: 0

Views

Author

Stefan Steinerberger, Feb 21 2006

Keywords

Examples

			0.143835643791640325906...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sum[N[Cos[i],400]/i!, {i,1,300}]][[1]] (*which is accurate to 300 digits*) (* corrected by Harvey P. Dale, Nov 29 2011 *)
  • PARI
    suminf(k=1, cos(k)/k!) \\ Michel Marcus, Jul 19 2020

Formula

From Amiram Eldar, Jul 19 2020: (Start)
Equals e^cos(1) * cos(sin(1)) - 1.
Equals cos(sin(1)) * (cosh(cos(1)) + sinh(cos(1))) - 1.
Equals (e^(e^i) + e^(e^(-i)))/2 - 1. (End)

A351738 Decimal expansion of Sum_{k>0} sin(sqrt(k)) / k.

Original entry on oeis.org

1, 7, 1, 5, 6, 7, 1, 7, 9, 4, 7, 0, 9
Offset: 1

Views

Author

Bernard Schott, May 20 2022

Keywords

Comments

Sum_{k>0} sin(k^alpha) / (k^beta) with 0 < alpha < 1 is convergent if beta > max(alpha, 1-alpha); the constant of this sequence corresponds to the case alpha = 1/2 and beta = 1 (see Arnaudiès).
Consequence: Sum_{k>0} sin(k^(1/m)) / k converges for any positive integer m.
The sequence converges slowly.

Examples

			1.715671794709...
		

References

  • J. M. Arnaudiès, P. Delezoide et H. Fraysse, Exercices résolus d'Analyse du cours de mathématiques - 2, Dunod, 1993, Exercice 11, pp. 316-319.

Crossrefs

Programs

  • PARI
    default(realprecision, 100); sumalt(k=0, sum(j=1+floor(k^2*Pi^2),floor((k+1)^2*Pi^2), sin(sqrt(j))/j)) \\ Vaclav Kotesovec, May 21 2022

Extensions

More digits from Stefano Spezia, May 21 2022
Showing 1-2 of 2 results.