cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114944 a(n) = prime(n) + semiprime(n) + 3almostprime(n) + 4almostprime(n).

Original entry on oeis.org

30, 45, 68, 77, 106, 112, 128, 164, 176, 188, 204, 223, 243, 273, 286, 304, 319, 328, 350, 372, 385, 424, 439, 459, 479, 496, 511, 529, 544, 553, 580, 596, 626, 632, 668, 692, 730, 742, 753, 771, 781, 793, 823, 838, 857, 870, 887, 909, 929, 938, 974, 999
Offset: 1

Views

Author

Jonathan Vos Post, Feb 20 2006

Keywords

Comments

Primes in this sequence include a(12) = 223, a(23) = 439, a(25) = 479, a(43) = 823, a(45) = 857, a(47) = 887, a(49) = 929.

Examples

			a(1) = prime(1) + semiprime(1) + 3almostprime(1) + 4almostprime(1) = 2 + 4 + 8 + 16 = 30.
a(6) = (prime(6) + semiprime(6) + 3almostprime(6)) + 4almostprime(6) = A114382(6) + 4almostprime(6) = 56 + 56 = 112.
		

Crossrefs

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]] ]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    AlmostPrime[k_, n_] := Block[{e = Floor[Log[2, n]], a, b}, a = 2^e; Do[b = 2^p; While[AlmostPrimePi[k, a] < n, a = a + b]; a = a - b/2, {p, e, 0, -1}]; a + b/2]; Table[ Sum[ AlmostPrime[k, n], {k, 4}], {n, 52}] (* Robert G. Wilson v, Feb 21 2006 *)
    nn=500;Module[{p=Prime[Range[nn]],p2=Select[Range[nn], PrimeOmega[#] == 2&], p3=Select[Range[nn], PrimeOmega[#] ==3&],p4 =Select[Range[nn], PrimeOmega[#]==4&],len},len=Min[Length/@{p,p2,p3,p4}];Total/@Thread[ {Take[p,len],Take[p2,len],Take[p3,len],Take[p4,len]}]] (* Harvey P. Dale, Jul 13 2012 *)

Formula

a(n) = A000040(n) + A001358(n) + A014612(n) + A014613(n).
a(n) = A014613(n) + A114382(n).

Extensions

Corrected by Harvey P. Dale, Jul 13 2012