A114963 a(n) = n^2 + 22.
22, 23, 26, 31, 38, 47, 58, 71, 86, 103, 122, 143, 166, 191, 218, 247, 278, 311, 346, 383, 422, 463, 506, 551, 598, 647, 698, 751, 806, 863, 922, 983, 1046, 1111, 1178, 1247, 1318, 1391, 1466, 1543, 1622, 1703, 1786, 1871, 1958, 2047, 2138, 2231, 2326, 2423, 2522, 2623
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- J. H. E. Cohn, The diophantine equation x^2 + C = y^n, Acta Arithmetica LXV.4 (1993).
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Cf. similar sequences listed in A114962.
Programs
-
Magma
[n^2+22: n in [0..60]]; // Vincenzo Librandi, Apr 30 2014
-
Mathematica
Table[n^2 + 22, {n, 0, 60}] (* Vincenzo Librandi, Apr 30 2014 *)
-
PARI
a(n)=n^2+22 \\ Amiram Eldar, Nov 04 2020
Formula
G.f.: (22 - 43*x + 23*x^2)/(1 - x)^3. - Vincenzo Librandi, Apr 30 2014
From Amiram Eldar, Nov 04 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(22)*Pi*coth(sqrt(22)*Pi))/44.
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(22)*Pi*cosech(sqrt(22)*Pi))/44. (End)
From Elmo R. Oliveira, Nov 29 2024: (Start)
E.g.f.: exp(x)*(22 + x + x^2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
Extensions
a(0)=22 from Vincenzo Librandi, Apr 30 2014
Definition changed by Bruno Berselli, Mar 13 2015
Offset corrected by Amiram Eldar, Nov 04 2020
Comments