A115006 Row 2 of array in A114999.
0, 3, 8, 16, 26, 39, 54, 72, 92, 115, 140, 168, 198, 231, 266, 304, 344, 387, 432, 480, 530, 583, 638, 696, 756, 819, 884, 952, 1022, 1095, 1170, 1248, 1328, 1411, 1496, 1584, 1674, 1767, 1862, 1960, 2060, 2163, 2268, 2376, 2486, 2599, 2714, 2832, 2952, 3075, 3200
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..2000
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Crossrefs
Programs
-
Magma
[ n*(n+1) + (n+1)^2 div 4: n in [0..50] ];
-
Maple
A115006:=n->(10*n^2 + 12*n + 1 - (-1)^n)/8: seq(A115006(n), n=0..50); # Wesley Ivan Hurt, Oct 27 2014
-
Mathematica
Table[(10*n^2 + 12*n + 1 - (-1)^n)/8, {n, 0, 50}] (* Wesley Ivan Hurt, Oct 27 2014 *) LinearRecurrence[{2,0,-2,1},{0,3,8,16},60] (* Harvey P. Dale, Jan 13 2015 *)
-
PARI
{for(n=0, 50, print1(n*(n+1)+floor((n+1)^2/4), ","))}
Formula
a(n) = floor((n+1)^2/4)+n*(n+1).
G.f.: x*(2*x+3)/((1-x)^3*(1+x)).
From Wesley Ivan Hurt, Oct 27 2014: (Start)
a(n) = 2*a(n-1)-2*a(n-3)+a(n-4).
a(n) = (10*n^2 + 12*n + 1 - (-1)^n)/8.
a(n) = Sum_{i=1..n+1} (10*i + (-1)^i - 9)/4. (End)
E.g.f.: (x*(11 + 5*x)*cosh(x) + (1 + 11*x + 5*x^2)*sinh(x))/4. - Stefano Spezia, Aug 22 2023
Extensions
Edited by Klaus Brockhaus, Nov 18 2008
Comments