A259230
a(n) = smallest k such that (A115091(n)-k)! == -1 (mod A115091(n)^2).
Original entry on oeis.org
1, 6, 1, 24, 64, 1, 384
Offset: 1
a(2) = 6, because 6 is the smallest k such that (A115091(2)-k)! == -1 (mod A115091(2)^2), which yields the congruence (11-6)! == -1 (mod 11^2).
-
t = Select[Prime@ Range@ 120, AnyTrue[Range@ #, Function[m, Divisible[m! + 1, #^2]]] &]; Table[k = 1; While[Mod[(t[[n]] - k)!, t[[n]]^2] != t[[n]]^2 - 1, k++]; k, {n, 7}] (* Michael De Vlieger, Nov 10 2015, Version 10 *)
-
forprime(p=1, , for(k=1, p-1, if(Mod((p-k)!, p^2)==-1, print1(k, ", "); break({1}))))
A064237
Numbers k such that k! + 1 is divisible by a square.
Original entry on oeis.org
4, 5, 7, 12, 23
Offset: 1
4 is in the sequence because 4! + 1 = 5^2.
5 is in the sequence because 5! + 1 = 11^2.
6 is not in the sequence because 6! + 1 = 721
7 is in the sequence because 7! + 1 = 71^2.
12 is in the sequence because 12! + 1 = 13^2 * 2834329.
23 is a term because 23!+1 = 47^2*79*148139754736864591.
From _Thomas Richard_, Aug 31 2021: (Start)
229 and 562 are terms because
229!+1 = 613^2 * 38669 * 1685231 * 3011917759 * (417-digit composite)
562!+1 = 563^2 * 64467346976659839517037 * 112870688711507255213769871 * 63753966393108716329397432599379239 * (1214-digit prime). (End)
-
remove(t -> numtheory:-issqrfree(t!+1), [$1..50]); # Robert Israel, Jul 04 2016
-
Flatten[Position[MoebiusMu[Range[30]!+1], 0]]; (* T. D. Noe, Mar 01 2006, Nov 21 2008 *)
-
lista(nn) = for(n=1, nn, if(!issquarefree(n!+1), print1(n, ", "))); \\ Altug Alkan, Mar 08 2016
Showing 1-2 of 2 results.
Comments