A115178 Expansion of c(x^2+x^3), c(x) the g.f. of A000108.
1, 0, 1, 1, 2, 4, 7, 15, 29, 61, 126, 266, 566, 1212, 2619, 5685, 12419, 27247, 60049, 132847, 294931, 656877, 1467258, 3286218, 7378240, 16603458, 37441990, 84599854, 191501532, 434224404, 986161959, 2243009869, 5108859821
Offset: 0
Examples
1 + x^2 + x^3 + 2*x^4 + 4*x^5 + 7*x^6 + 15*x^7 + 29*x^8 + 61*x^9 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A007477.
Programs
-
Mathematica
Table[Sum[Binomial[k, n - 2*k]*CatalanNumber[k], {k, 0, Floor[n/2]}], {n, 0, 50}] (* G. C. Greubel, Feb 03 2017 *)
-
PARI
{a(n) = local(A); A = O(x^0); for( k=0, n\5, A = 1 / (1 - x^2 / (1 - x / (1 - x^2 * A)))); polcoeff( A, n)} /* Michael Somos, May 12 2012 */
Formula
a(n) = Sum_{k=0..floor(n/2)} C(k)*C(k,n-2k).
D-finite with recurrence (n+2)*a(n) +(n+2)*a(n-1) +4*(1-n)*a(n-2) +2*(7-4*n)*a(n-3) +2*(5-2*n)*a(n-4)=0. - R. J. Mathar, Nov 15 2011
G.f. A(x) satisfies A(x) = 1 / (1 - x^2 / (1 - x / (1 - x^2 * A(x)))). - Michael Somos, May 12 2012
G.f.: (1-sqrt(1-4*z^2*(1+z)))/(2*z^2*(1+z)). - José Luis Ramírez Ramírez, May 27 2013
a(n) ~ sqrt(3 - 1/9*(-2 + (19-3*sqrt(33))^(1/3) + (19+3*sqrt(33))^(1/3))^2) * (((-2 + (19-3*sqrt(33))^(1/3) + (19+3*sqrt(33))^(1/3)) * (4 + (19-3*sqrt(33))^(1/3) + (19+3*sqrt(33))^(1/3)))/9)^n /(n^(3/2)*sqrt(Pi)). - Vaclav Kotesovec, Sep 16 2013
Comments