A115186 Smallest number m such that m and m+1 have exactly n prime factors (counted with multiplicity).
2, 9, 27, 135, 944, 5264, 29888, 50624, 203391, 3290624, 6082047, 32535999, 326481920, 3274208000, 6929459199, 72523096064, 37694578688, 471672487935, 11557226700800, 54386217385983, 50624737509375, 275892612890624, 4870020829413375, 68091093855502335, 2280241934368767, 809386931759611904, 519017301463269375
Offset: 1
Keywords
Examples
a(10) = 3290624 = 6427 * 2^9, 3290624+1 = 13 * 5^5 * 3^4: A001222(3290624) = A001222(3290625) = 10.
References
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 135, p. 46, Ellipses, Paris 2008.
Crossrefs
Programs
-
Maple
f:= proc(n) uses priqueue; local t,x,p,i; initialize(pq); insert([-3^n, 3$n], pq); do t:= extract(pq); x:= -t[1]; if numtheory:-bigomega(x-1)=n then return x-1 elif numtheory:-bigomega(x+1)=n then return x fi; p:= nextprime(t[-1]); for i from n+1 to 2 by -1 while t[i] = t[-1] do insert([t[1]*(p/t[-1])^(n+2-i), op(t[2..i-1]), p$(n+2-i)], pq) od; od end proc: seq(f(i),i=1..27); # Robert Israel, Sep 30 2024
Extensions
a(13)-a(15) from Martin Fuller, Jan 17 2006
a(16)-a(17) from Donovan Johnson, Apr 08 2008
a(18)-a(22) from Donovan Johnson, Jan 21 2009
a(23)-a(25) from Donovan Johnson, May 25 2013
a(26)-a(27) from Robert Israel, Sep 30 2024
Comments