cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115186 Smallest number m such that m and m+1 have exactly n prime factors (counted with multiplicity).

Original entry on oeis.org

2, 9, 27, 135, 944, 5264, 29888, 50624, 203391, 3290624, 6082047, 32535999, 326481920, 3274208000, 6929459199, 72523096064, 37694578688, 471672487935, 11557226700800, 54386217385983, 50624737509375, 275892612890624, 4870020829413375, 68091093855502335, 2280241934368767, 809386931759611904, 519017301463269375
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 16 2006

Keywords

Comments

A001222(a(n)) = A001222(a(n)+1) = n: subsequence of A045920.
a(16) > 4*10^10. - Martin Fuller, Jan 17 2006
a(n) <= A093548(n) <= A052215(n). - Zak Seidov, Jan 16 2015
Apparently, 4*a(n)+2 is the least number k such that k-2 and k+2 have exactly n+2 prime factors, counted with multiplicity. - Hugo Pfoertner, Apr 02 2024

Examples

			a(10) = 3290624 = 6427 * 2^9, 3290624+1 = 13 * 5^5 * 3^4:
A001222(3290624) = A001222(3290625) = 10.
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 135, p. 46, Ellipses, Paris 2008.

Crossrefs

Equivalent sequences for longer runs: A113752 (3), A356893 (4).

Programs

  • Maple
    f:= proc(n) uses priqueue; local t,x,p,i;
        initialize(pq);
        insert([-3^n, 3$n], pq);
        do
          t:= extract(pq);
          x:= -t[1];
          if numtheory:-bigomega(x-1)=n then return x-1
          elif numtheory:-bigomega(x+1)=n then return x
          fi;
          p:= nextprime(t[-1]);
          for i from n+1 to 2 by -1 while t[i] = t[-1] do
            insert([t[1]*(p/t[-1])^(n+2-i), op(t[2..i-1]), p$(n+2-i)], pq)
          od;
        od
    end proc:
    seq(f(i),i=1..27); # Robert Israel, Sep 30 2024

Extensions

a(13)-a(15) from Martin Fuller, Jan 17 2006
a(16)-a(17) from Donovan Johnson, Apr 08 2008
a(18)-a(22) from Donovan Johnson, Jan 21 2009
a(23)-a(25) from Donovan Johnson, May 25 2013
a(26)-a(27) from Robert Israel, Sep 30 2024