cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A115240 a(n) = A001672(n) - A115239(n).

Original entry on oeis.org

0, 0, 3, 10, 33, 104, 328, 1031, 3241, 10183, 31991, 100503, 315740, 991928, 3116234, 9789941, 30756009, 96622854, 303549648, 953629346, 2995914948, 9411944394, 29568495367, 92892167824, 291829352014, 916808948392, 2880240257014
Offset: 1

Views

Author

Hieronymus Fischer, Jan 17 2006

Keywords

Examples

			a(5) = A001672(5) - A115239(5) = 306 - 273 = 33.
		

Crossrefs

Programs

  • Mathematica
    a[1] = Floor[Pi]; a[n_] := a[n] = Floor[a[n - 1]*Pi]; Array[ Floor[Pi^# ] - a[ # ] &, 27] (* Robert G. Wilson v *)

Extensions

More terms from Robert G. Wilson v, Jan 18 2006

A134915 a(0) = 1, a(n) = floor(a(n - 1)*Pi).

Original entry on oeis.org

1, 3, 9, 28, 87, 273, 857, 2692, 8457, 26568, 83465, 262213, 823766, 2587937, 8130243, 25541911, 80242279, 252088554, 791959549, 2488014301, 7816327450, 24555716894, 77144059797, 242355211526, 761381352089, 2391950062303, 7514532743484, 23607600862089, 74165465437218
Offset: 0

Views

Author

Rolf Pleisch, Jan 29 2008

Keywords

Comments

Coincides with first 11 terms of A085839.

Crossrefs

Essentially the same as A115239.

Programs

  • Mathematica
    NestList[Floor[# \[Pi]]&, 1, 30]  (* Harvey P. Dale, Mar 28 2011 *)

Formula

a(n) = A115239(n), n > 0. [From R. J. Mathar, Oct 27 2008]

A076884 Erroneous version of A134915.

Original entry on oeis.org

1, 2, 8, 27, 86, 272, 856, 2691, 8456, 26567, 83464, 262212, 823765, 2587936, 8130242, 25541910, 80242278, 252088553, 791959548, 2488014300, 7816327449, 24555716893, 77144059796, 242355211525
Offset: 1

Views

Author

Benoit Cloitre, Nov 25 2002

Keywords

Comments

Original definition: Let u(0)=1, u(n) = Pi * floor(u(n-1)), then a(n) = u(n)/Pi.
This is equivalent to a(n)=floor(u(n-1))=floor(Pi*a(n-1)), a(1)=1. So it should be A134915(n-1), but the given values do not correspond to that definition, as observed by H. P. Dale and R. Israel. - M. F. Hasler, Oct 15 2012

Crossrefs

A115239 is the same sequence without the initial term 1.
A134915 has offset 1, but (should have) the same values according to the definition to this sequence.

Formula

For n>1, a(n)=floor(c*Pi^n) where c=0.8912617965328349410297456126867992677088941847...
Showing 1-3 of 3 results.