A115243 G.f.: (4*x^2 + 2*x)/(4*x^3 - x^2 - 4*x + 1).
0, 2, 12, 50, 204, 818, 3276, 13106, 52428, 209714, 838860, 3355442, 13421772, 53687090, 214748364, 858993458, 3435973836, 13743895346, 54975581388, 219902325554, 879609302220, 3518437208882, 14073748835532, 56294995342130, 225179981368524, 900719925474098
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (4,1,-4).
Crossrefs
Cf. A112627.
Programs
-
Magma
[(4^(n+1)+(-1)^n)/5 - 1: n in [0..25]]; // Vincenzo Librandi, Jan 10 2019
-
Maple
seq((4^(n+1)+(-1)^n)/5 - 1, n=0..100); # Robert Israel, Mar 09 2016
-
Mathematica
Table[InverseZTransform[(1 + 2*x)/(1 - x - 16*x^2 + 16*x^3), x, n]*2^( 2*n), {n, 1, 25}] LinearRecurrence[{4, 1, -4}, {0, 2, 12}, 50] (* G. C. Greubel, Feb 07 2016 *)
-
PARI
a(n) = (bitneg(0,2*n+2)-1)\5; \\ Kevin Ryde, May 05 2023
Formula
a(n) = InverseZTransform[(1 + 2*x)/(1 - x - 16*x^2 + 16*x^3), x, n] * 2^(2*n).
a(n) = 5*a(n-1)-4*a(n-2) +2*(-1)^n.
a(n) = 4*a(n-1)+a(n-2)-4*a(n-3). - Gary Detlefs Dec 17 2010
a(n) = (4^(n+1)+(-1)^n)/5 - 1. - Robert Israel, Mar 09 2016
a(n) = 4*a(n-1)+3+(-1)^n. - Mikel Mcdaniel, Jan 10 2019
Extensions
Entry revised by N. J. A. Sloane, Dec 18 2010
Comments