cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115243 G.f.: (4*x^2 + 2*x)/(4*x^3 - x^2 - 4*x + 1).

Original entry on oeis.org

0, 2, 12, 50, 204, 818, 3276, 13106, 52428, 209714, 838860, 3355442, 13421772, 53687090, 214748364, 858993458, 3435973836, 13743895346, 54975581388, 219902325554, 879609302220, 3518437208882, 14073748835532, 56294995342130, 225179981368524, 900719925474098
Offset: 0

Views

Author

Roger L. Bagula, Mar 04 2006

Keywords

Comments

Inverse Z-transform of polynomial in A112627.
a(n) is also the number of corners in the n-th approximation of the Hilbert Curve. The 1st Hilbert Curve approximation has 2 corners. To find a(n) given a(n - 1), look at how the n-th Hilbert Curve approximation is constructed: duplicate the (n-1)-th approximation 4 times and connect the duplicates with 3 line segments. a(n) will always be 4 * a(n - 1) corners from the 4 duplicates plus 4 new corners if n is even or 2 new corners if n is odd. - Mikel Mcdaniel, Jan 10 2019

Crossrefs

Cf. A112627.

Programs

  • Magma
    [(4^(n+1)+(-1)^n)/5 - 1: n in [0..25]]; // Vincenzo Librandi, Jan 10 2019
    
  • Maple
    seq((4^(n+1)+(-1)^n)/5 - 1, n=0..100); # Robert Israel, Mar 09 2016
  • Mathematica
    Table[InverseZTransform[(1 + 2*x)/(1 - x - 16*x^2 + 16*x^3), x, n]*2^( 2*n), {n, 1, 25}]
    LinearRecurrence[{4, 1, -4}, {0, 2, 12}, 50] (* G. C. Greubel, Feb 07 2016 *)
  • PARI
    a(n) = (bitneg(0,2*n+2)-1)\5; \\ Kevin Ryde, May 05 2023

Formula

a(n) = InverseZTransform[(1 + 2*x)/(1 - x - 16*x^2 + 16*x^3), x, n] * 2^(2*n).
a(n) = 5*a(n-1)-4*a(n-2) +2*(-1)^n.
a(n) = 4*a(n-1)+a(n-2)-4*a(n-3). - Gary Detlefs Dec 17 2010
a(n) = (4^(n+1)+(-1)^n)/5 - 1. - Robert Israel, Mar 09 2016
a(n) = 4*a(n-1)+3+(-1)^n. - Mikel Mcdaniel, Jan 10 2019

Extensions

Entry revised by N. J. A. Sloane, Dec 18 2010