A115246 Number of different ways to select n elements from three sets of n elements such that there is at least one element from each set.
0, 0, 27, 288, 2250, 15795, 105987, 696864, 4540968, 29490750, 191420427, 1243565235, 8091223647, 52739879283, 344402073027, 2253045672480, 14764068268068, 96899123172708, 636877933530303, 4191430966219038, 27617820628739718, 182176855684869243
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[Binomial(3*n, n)-3*Binomial(2*n, n)+3: n in [1..40]]; // Vincenzo Librandi, Feb 09 2016
-
Mathematica
Table[Binomial[3 n, n] - 3*Binomial[2 n, n] + 3, {n, 1, 100}] (* G. C. Greubel, Feb 08 2016 *)
-
PARI
a(n) = binomial(3*n, n) - 3*binomial(2*n, n) + 3 \\ Michel Marcus, Jul 15 2013
Formula
a(n) = binomial(3n, n) - 3*binomial(2n, n) + 3.
From G. C. Greubel, Feb 08 2016: (Start)
E.g.f.: 3*exp(x) - 3*exp(2*x)*BesselI_{0}(2*x) + Hypergeometric2F2[1/3,2/3; 1/2,1; 27*x/4].
G.f.: (1/((x-1)sqrt(a*b)))*[3*sqrt(a)*(1-x) - 3*sqrt(a*b) - 2*(1-x)*sqrt(b)*cos(c/3)], where a = 4-27*x, b = 1-4*x, c = arcsin(3*sqrt(3*x)/2). (End)