cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115246 Number of different ways to select n elements from three sets of n elements such that there is at least one element from each set.

Original entry on oeis.org

0, 0, 27, 288, 2250, 15795, 105987, 696864, 4540968, 29490750, 191420427, 1243565235, 8091223647, 52739879283, 344402073027, 2253045672480, 14764068268068, 96899123172708, 636877933530303, 4191430966219038, 27617820628739718, 182176855684869243
Offset: 1

Views

Author

Hieronymus Fischer, Jan 21 2006

Keywords

Programs

  • Magma
    [Binomial(3*n, n)-3*Binomial(2*n, n)+3: n in [1..40]]; // Vincenzo Librandi, Feb 09 2016
  • Mathematica
    Table[Binomial[3 n, n] - 3*Binomial[2 n, n] + 3, {n, 1, 100}] (* G. C. Greubel, Feb 08 2016 *)
  • PARI
    a(n) = binomial(3*n, n) - 3*binomial(2*n, n) + 3 \\ Michel Marcus, Jul 15 2013
    

Formula

a(n) = binomial(3n, n) - 3*binomial(2n, n) + 3.
From G. C. Greubel, Feb 08 2016: (Start)
E.g.f.: 3*exp(x) - 3*exp(2*x)*BesselI_{0}(2*x) + Hypergeometric2F2[1/3,2/3; 1/2,1; 27*x/4].
G.f.: (1/((x-1)sqrt(a*b)))*[3*sqrt(a)*(1-x) - 3*sqrt(a*b) - 2*(1-x)*sqrt(b)*cos(c/3)], where a = 4-27*x, b = 1-4*x, c = arcsin(3*sqrt(3*x)/2). (End)