cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A115112 Number of different ways to select n elements from two sets of n elements under the precondition of choosing at least one element from each set.

Original entry on oeis.org

0, 4, 18, 68, 250, 922, 3430, 12868, 48618, 184754, 705430, 2704154, 10400598, 40116598, 155117518, 601080388, 2333606218, 9075135298, 35345263798, 137846528818, 538257874438, 2104098963718, 8233430727598, 32247603683098, 126410606437750, 495918532948102
Offset: 1

Views

Author

Hieronymus Fischer, Jan 22 2006

Keywords

Comments

Also number of lattice paths from (0,0) to (n,n) that use steps (1,0) and (0,1) and do not include (n,0) or (0,n). - Ran Pan, Apr 10 2015

Examples

			a(5) = binomial(10,5) - 2 = 250.
		

Crossrefs

Programs

  • Magma
    [Binomial(2*n, n)-2: n in [1..25]]; // Vincenzo Librandi, Apr 10 2015
  • Maple
    seq(sum((binomial(n,m))^2,m=1..n-1),n=1..24); # Zerinvary Lajos, Jun 19 2008
  • Mathematica
    Table[Sum[Binomial[n, i] Binomial[n, n - i], {i, 1, n - 1}], {n, 1, 10}]

Formula

a(n) = binomial(2*n, n) - 2 = A000984(n) - 2.
a(n) = Sum_{i=1..n-1} binomial(n,i)^2.
Recurrence: n*(3*n - 5)*a(n) = (15*n^2 - 31*n + 12)*a(n-1) - 2*(2*n - 3)*(3*n - 2)*a(n-2). - Vaclav Kotesovec, Oct 19 2012
a(n) ~ 4^n/sqrt(Pi*n). - Vaclav Kotesovec, Oct 19 2012
E.g.f.: exp(2*x) * BesselI(0,2*x) - 2*exp(x) + 1. - Ilya Gutkovskiy, Mar 04 2021

A115111 Number of different ways to select n elements from four sets of n elements under the precondition of choosing at least one element from each set.

Original entry on oeis.org

0, 0, 0, 256, 5000, 65880, 739508, 7653632, 75687696, 728589000, 6899424840, 64678048600, 602586261420, 5593531747076, 51815550195500, 479511147907328, 4436081306716064, 41044438822080816, 379913227858140396
Offset: 1

Views

Author

Hieronymus Fischer, Jan 22 2006

Keywords

Comments

The number of different ways to select n elements from four sets of n elements under the precondition of choosing at least one element from each set.

Examples

			a(5)=binomial(20,5)-4*(binomial(15,5)+1)+6*binomial(10,5)=5000.
		

Crossrefs

Cf. A115246.

Formula

a(n) = binomial(4*n, n)-4*(binomial(3*n, n)+1)+6*binomial(2*n, n); also: a(n)=sum{binomial(n, i)*binomial(n, j)*binomial(n, k)*binomial(n, l)|i, j, k, l=1...(n-3), i+j+k+l=n}.

A115791 Number of different ways to select n elements from five sets of n elements under the precondition of choosing at least one element from each set.

Original entry on oeis.org

0, 0, 0, 0, 3125, 97200, 1932805, 31539200, 461828790, 6332578125, 83235183075, 1063505908080, 13327125965725, 164758298214965, 2017489363833125, 24538128923443200, 297028957324770140, 3583456866615114630
Offset: 1

Views

Author

Hieronymus Fischer, Jan 31 2006

Keywords

Comments

The number of different ways to select n elements from five sets of n elements under the precondition of choosing at least one element from each set.

Examples

			a(6)=binomial(30,6)-5*binomial(24,6)+10*binomial(18,6)-10*binomial(12,6)+5=97200;
		

Crossrefs

Programs

  • Mathematica
    Table[Binomial[5n,n]-5Binomial[4n,n]+10Binomial[3n,n]-10Binomial[2n,n]+5,{n,20}] (* Harvey P. Dale, Nov 06 2011 *)

Formula

a(n) = binomial(5*n,n)-5*binomial(4*n,n)+10*binomial(3*n,n)-10*binomial(2*n,n)+5; ; also: a(n)=sum{binomial(n,i)*binomial(n,j)*binomial(n,k)*binomial(n,l)*binomial(n,m)||i,j,k,l,m=1...(n-4),i+j+k+l+m=n}. General formula for N sets with m elements each: the number of different ways to select k elements from j different sets: G(N,m,j,k) = binomial(N,j)*sum(binomial(j,i)*binomial(i*m,k)*(-1)^i*(-1)^j|i=1...j); Recursion formula: G(N,m,j,k) = binomial(N,j)*binomial(j*m,k) - sum(binomial(N-i,j-i)*G(N,m,i,k)|i=1...j-1);
Showing 1-3 of 3 results.