cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A189375 Expansion of 1/((1-x)^5*(x^3+x^2+x+1)^3).

Original entry on oeis.org

1, 2, 3, 4, 8, 12, 16, 20, 30, 40, 50, 60, 80, 100, 120, 140, 175, 210, 245, 280, 336, 392, 448, 504, 588, 672, 756, 840, 960, 1080, 1200, 1320, 1485, 1650, 1815, 1980, 2200, 2420, 2640, 2860, 3146, 3432, 3718, 4004, 4368
Offset: 0

Views

Author

Johannes W. Meijer, Apr 29 2011

Keywords

Comments

The Gi1 triangle sums of A139600 lead to the sequence given above, see the formulas. For the definitions of the Gi1 and other triangle sums see A180662.

Crossrefs

Programs

  • Maple
    a:= n-> coeff(series(1/((1-x)^5*(x^3+x^2+x+1)^3), x, n+1), x, n):
    seq(a(n), n=0..50);
  • Mathematica
    CoefficientList[Series[1/((1-x)^5(x^3+x^2+x+1)^3),{x,0,50}],x] (* or *) LinearRecurrence[{2,-1,0,3,-6,3,0,-3,6,-3,0,1,-2,1},{1,2,3,4,8,12,16,20,30,40,50,60,80,100},50] (* Harvey P. Dale, Dec 05 2014 *)

Formula

a(n) = sum(A056594(n-k)*A115269(k), k=0..n).
Gi1(n) = A189375(n-4) - A189375(n-5) - A189375(n-8) + 2*A189375(n-9) with A189375(n)=0 for n <= -1.
a(n) = (2*n^4+56*n^3+538*n^2+2044*n+2469+3*((2*n^2+28*n+89)*(-1)^n+(4*(-1)^((2*n-1+(-1)^n)/4)*(n^2+16*n+57-(n^2+12*n+29)*(-1)^n))))/3072. - Luce ETIENNE, Jun 25 2015

A115268 Correlation triangle for floor((n+4)/4).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 3, 2, 2, 2, 3, 3, 3, 3, 2, 2, 4, 4, 4, 4, 4, 2, 2, 4, 5, 5, 5, 5, 4, 2, 3, 4, 6, 6, 8, 6, 6, 4, 3, 3, 5, 6, 7, 9, 9, 7, 6, 5, 3, 3, 6, 7, 8, 10, 12, 10, 8, 7, 6, 3, 3, 6, 8, 9, 11, 13, 13, 11, 9, 8, 6, 3, 4, 6, 9, 10, 14, 14, 16, 14, 14, 10, 9, 6, 4
Offset: 0

Views

Author

Paul Barry, Jan 18 2006

Keywords

Comments

Row sums are A115269. Diagonal sums are A115270. T(2n,n) is A115271. T(2n,n)-T(2n,n-1) is 1,1,1,0,2,2,2,0,3,3,3,0,...

Examples

			Triangle begins
1;
1,1;
1,2,1;
1,2,2,1;
2,2,3,2,2;
2,3,3,3,3,2;
2,4,4,4,4,4,2;
2,4,5,5,5,5,4,2;
3,4,6,6,8,6,6,4,3;
3,5,6,7,9,9,7,6,5,3;
3,6,7,8,10,12,10,8,7,6,3;
3,6,8,9,11,13,13,11,9,8,6,3;
		

Formula

G.f.: (1+x+x^2+x^3)(1+xy+x^2*y^2+x^3*y^3)/((1-x^4)^2*(1-x^4*y^4)^2*(1-x^2*y)); Number triangle T(n, k)=sum{j=0..n, [j<=k]*floor((k-j+4)/4)*[j<=n-k]*floor((n-k-j+4)/4)}.

A366817 Detour index of n body-centered cubic grid unit cells in a row.

Original entry on oeis.org

64, 298, 752, 1476, 2520, 3934, 5768, 8072, 10896, 14290, 18304, 22988, 28392, 34566, 41560, 49424, 58208, 67962, 78736, 90580, 103544, 117678, 133032, 149656, 167600, 186914, 207648, 229852, 253576, 278870, 305784, 334368, 364672, 396746, 430640
Offset: 1

Views

Author

Benedek Nagy, Oct 24 2023

Keywords

Crossrefs

Programs

  • Mathematica
    A366817[n_] := (25*n^3 + 180*n^2 - 13*n)/3; Array[A366817, 50] (* or *)
    LinearRecurrence[{4, -6, 4, -1}, {64, 298, 752, 1476}, 50] (* Paolo Xausa, May 28 2024 *)
  • PARI
    a(n) = (25*n^3 + 180*n^2 - 13*n)/3 \\ Andrew Howroyd, Oct 24 2023

Formula

a(n) = (25*n^3 + 180*n^2 - 13*n)/3.
From Stefano Spezia, May 28 2024: (Start)
G.f.: 2*x*(32 + 21*x - 28*x^2)/(1 - x)^4.
E.g.f.: exp(x)*x*(192 + 255*x + 25*x^2)/3. (End)
Showing 1-3 of 3 results.