cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A143097 3*k - 2 interleaved with 3*k - 1 and 3*k.

Original entry on oeis.org

1, 2, 4, 3, 5, 7, 6, 8, 10, 9, 11, 13, 12, 14, 16, 15, 17, 19, 18, 20, 22, 21, 23, 25, 24, 26, 28, 27, 29, 31, 30, 32, 34, 33, 35, 37, 36, 38, 40, 39, 41, 43, 42, 44, 46, 45, 47, 49, 48, 50, 52, 51, 53, 55, 54, 56, 58, 57, 59, 61, 60, 62, 64, 63, 65, 67, 66
Offset: 1

Views

Author

Gary W. Adamson, Jul 24 2008

Keywords

Comments

First differences give A143098.
Binomial transform = A143099: (1, 3, 9, 22, 50, 113, 256, ...).

Examples

			Interleave 3 subsets:
  1,....4,.......7,......10,......13,......16,...
  ...2,.......5,.......8,......11,......14,...
  .........3,.......6,.......9,......12,...
  ...
		

Crossrefs

Cf. A083220 (n + (n mod 4)). - Zak Seidov, Feb 23 2017

Programs

  • Maple
    A143097 := proc(n) if(n<=1)then return n: elif(n mod 3 <= 1)then return n+1-2*(n mod 3): else return n: fi: end: seq(A143097(n), n=1..70); # Nathaniel Johnston, Apr 30 2011
  • Mathematica
    With[{nn=70},Join[{1},Riffle[Rest[Select[Range[nn],!Divisible[#,3]&]], Range[ 3,nn,3],3]]] (* Harvey P. Dale, May 06 2012 *)
    Table[If[k == 1, 1, k - 1 + Mod[k - 1, 3]], {k, 100}] (* Zak Seidov, Feb 23 2017 *)

Formula

A permutation of the natural numbers: 3*k - 2 interleaved with 3*k - 1 and 3*k; k=1,2,3,...; given a(1) = 1. a(n) = n if the subset = 3*k - 1: (2, 5, 8, ...); a(n) = n+1 in 3*k - 2, k>1: (4, 7, 10, ...); and a(n) = (n-1) in 3*k: (3, 6, 9, ...).
G.f.: x(1+x+2x^2-2x^3+x^4)/((1-x)^2(1+x+x^2)). - R. J. Mathar, Sep 06 2008
a(n) = if(n==1, 1, (n-1) + (n-1) mod 3). - Zak Seidov, Feb 23 2017
For n>1, a(n) = n+2*sin(2*(n+1)*Pi/3)/sqrt(3). - Wesley Ivan Hurt, Sep 27 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = 2 - 2*Pi/(3*sqrt(3)) - log(2)/3. - Amiram Eldar, Aug 21 2023

A116080 Permutation of natural numbers generated by 4-rowed array shown below.

Original entry on oeis.org

0, 4, 1, 8, 5, 2, 12, 9, 6, 3, 16, 13, 10, 7, 20, 17, 14, 11, 24, 21, 18, 15, 28, 25, 22, 19, 32, 29, 26, 23, 36, 33, 30, 27, 40, 37, 34, 31, 44, 41, 38, 35, 48, 45, 42, 39, 52, 49, 46, 43, 56, 53, 50, 47, 60, 57, 54, 51, 64, 61, 58, 55, 68, 65, 62, 59, 72, 69, 66, 63, 76, 73, 70
Offset: 1

Views

Author

Giovanni Teofilatto, Mar 12 2006

Keywords

Comments

0 4 8 12 16 20 24 28 32 ... a(n) = 4n => A008586;
1 5 9 13 17 21 25 29 33 ... a(n) = 4n+1 => A016813;
2 6 10 14 18 22 26 30 34 ... a(n) = 4n+2 => A016825;
3 7 11 15 19 23 27 31 35 ... a(n) = 4n+3 => A004767.

References

  • M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Bologna 1988
  • Emanuele Munarini and Norma Zagaglia Salvi, Matematica Discreta,UTET, CittaStudiEdizioni, Milano 1997

Crossrefs

Cf. A115302.

Programs

  • Mathematica
    LinearRecurrence[{1,0,0,1,-1},{0,4,1,8,5,2,12,9,6,3,16},80] (* Harvey P. Dale, Feb 20 2022 *)

Formula

For n > 0, a(n+5) = a(n) + 8 iff a(n+5)= 1.
a(n)= a(n-1) + a(n-4) - a(n-5), n>=12. - R. J. Mathar, Apr 22 2010
G.f.: x^2*(4-3*x+7*x^2-3*x^3-7*x^4+13*x^5-10*x^6+3*x^9)/(1-x-x^4+x^5). - Philippe Deléham, Dec 02 2016

Extensions

Corrected (47 replaced by 41) by R. J. Mathar, Apr 22 2010

A115731 Permutation of natural numbers generated by 3-rowed array shown below.

Original entry on oeis.org

1, 6, 2, 7, 5, 3, 12, 8, 4, 13, 11, 9, 18, 14, 10, 19, 17, 15, 24, 20, 16, 25, 23, 21, 30, 26, 22, 31, 29, 27, 36, 32, 28, 37, 35, 33, 42, 38, 34, 43, 41, 39, 48, 44, 40, 49, 47, 45, 54, 50, 46, 55, 53, 51, 60, 56, 52, 61, 59, 57, 66, 62, 58, 67, 65, 63, 72, 68, 64, 73, 71, 69
Offset: 1

Views

Author

Giovanni Teofilatto, Mar 19 2006

Keywords

Comments

1 6 7 12 13 18 19 24 25 ... a(n)=congruent to {0, 1} mod 6, Cf. A047225.
2 5 8 11 14 17 20 23 26 ... a(n)= 3n+2= A016789.
3 4 9 10 15 16 21 22 27 ... a(n)=congruent to {3, 4} mod 6, Cf. A047230.

References

  • M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Bologna 1988
  • Emanuele Munarini and Norma Zagaglia Salvi, Matematica Discreta,UTET, CittaStudiEdizioni, Milano 1997

Crossrefs

Cf. A115302.

Programs

  • PARI
    Vec(x*(1 + 4*x - 8*x^2 + 13*x^3 - 15*x^4 + 13*x^5 - 5*x^6 - 4*x^7 + 4*x^8) / ((1 - x)^2*(1 - x + x^2)*(1 + x + x^2)) + O(x^80)) \\ Colin Barker, Apr 01 2018

Formula

Starting with the term a(3), a(n+6k) = a(n) + 6k, with k>=1.
From Colin Barker, Apr 01 2018: (Start)
G.f.: x*(1 + 4*x - 8*x^2 + 13*x^3 - 15*x^4 + 13*x^5 - 5*x^6 - 4*x^7 + 4*x^8) / ((1 - x)^2*(1 - x + x^2)*(1 + x + x^2)).
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - 2*a(n-4) + 2*a(n-5) - a(n-6) for n>9.
(End)

A116547 Permutation of natural numbers generated by 5-rowed array shown below.

Original entry on oeis.org

0, 5, 1, 10, 6, 2, 15, 11, 7, 3, 20, 16, 12, 8, 4, 25, 21, 17, 13, 9, 30, 26, 22, 18, 14, 35, 31, 27, 23, 19, 40, 36, 32, 28, 24, 45, 41, 37, 33, 29, 50, 46, 42, 38, 34, 55, 51, 47, 43, 39, 60, 56, 52, 48, 44, 65, 61, 57, 53, 49, 70, 66, 62, 58, 54, 75, 71, 67, 63, 59, 80, 76, 72
Offset: 1

Views

Author

Giovanni Teofilatto, Mar 16 2006

Keywords

Comments

0 5 10 15 20 25 30 35 40 45 ... a(n)=5n
1 6 11 16 21 26 31 36 41 46 ... a(n)=5n+1
2 7 12 17 22 27 32 37 42 47 ... a(n)=5n+2
3 8 13 18 23 28 33 38 43 48 ... a(n)=5n+3
4 9 14 19 24 29 34 39 44 49 ... a(n)=5n+4

References

  • M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Bologna 1988
  • Emanuele Munarini and Norma Zagaglia Salvi, Matematica Discreta,UTET, CittaStudiEdizioni, Milano 1997

Crossrefs

Programs

  • Maple
    0, 5, 1, 10, 6, 2, 15, 11, 7, 3, seq(seq(t + 5*k,t=[15,11,7,3,-1]),k=1..20); # Robert Israel, Mar 23 2017
  • Mathematica
    Select[Join[{0},Table[Most[NestList[#-4&,5n,5]],{n,20}]]//Flatten,#>=0&] (* Harvey P. Dale, Nov 26 2016 *)

Formula

Starting with term a(10): a(n+5k) = a(n) + 5k, with k>=1.
G.f.: x*(5-4*x+9*x^2-4*x^3-4*x^4+8*x^5-13*x^7+21*x^9-17*x^10+4*x^14)/(1-x-x^5+x^6). - Robert Israel, Mar 23 2017

A116551 Permutation of natural numbers generated by 3-rowed array shown below.

Original entry on oeis.org

0, 3, 1, 6, 4, 2, 9, 7, 5, 12, 10, 8, 15, 13, 11, 18, 16, 14, 21, 19, 17, 24, 22, 20, 27, 25, 23, 30, 28, 26, 33, 31, 29, 36, 34, 32, 39, 37, 35, 42, 40, 38, 45, 43, 41, 48, 46, 44, 51, 49, 47, 54, 52, 50, 57, 55, 53, 60, 58, 56, 63, 61, 59, 66, 64, 62, 69, 67, 65, 72, 70, 68, 75
Offset: 1

Views

Author

Giovanni Teofilatto, Mar 17 2006

Keywords

Comments

0 3 6 9 12 15 18 21 24 ... a(n)= 3n
1 4 7 10 13 16 19 22 25 ... a(n)= 3n+1
2 5 8 11 14 17 20 23 26 ... a(n)= 3n+2

References

  • M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Bologna 1988.
  • Emanuele Munarini and Norma Zagaglia Salvi, Matematica Discreta, UTET, CittaStudiEdizioni, Milano 1997.

Crossrefs

Cf. A115302.

Programs

  • Mathematica
    Rest[CoefficientList[Series[x^2*(2*x^5 - 5*x^3 + 5*x^2 - 2*x + 3)/(x^4 - x^3 - x + 1), {x,0,50}], x]] (* or *) Join[{0, 3, 1, 6, 4, 2, 9}, LinearRecurrence[{1,0,1,-1}, {7, 5, 12, 10}, 50]] (* G. C. Greubel, Sep 20 2017 *)
  • PARI
    x='x+O('x^50); Vec(x^2*(2*x^5 - 5*x^3 + 5*x^2 - 2*x + 3)/(x^4 - x^3 - x + 1)) \\ G. C. Greubel, Sep 20 2017

Formula

Starting at the term a(3), a(n+3k) = a(n) + 3k, with k>=1.
From Chai Wah Wu, Jul 10 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n > 7.
G.f.: x^2*(2*x^5 - 5*x^3 + 5*x^2 - 2*x + 3)/(x^4 - x^3 - x + 1). (End)

A112303 Permutation of primes generated by 3-rowed array shown below.

Original entry on oeis.org

2, 7, 3, 17, 11, 5, 29, 19, 13, 41, 31, 23, 53, 43, 37, 67, 59, 47, 79, 71, 61, 97, 83, 73, 107, 101, 89, 127, 109, 103, 139, 139, 131, 113, 157, 149, 137, 173, 163, 151, 191, 179, 167, 193, 181, 227, 211, 197, 239, 229, 223, 257, 263, 251
Offset: 1

Views

Author

Giovanni Teofilatto, Oct 17 2006, Nov 08 2006

Keywords

Comments

2 7 17 29 41 53 67 79...(A031377)
3 11 19 31 43 59 71 83...(A031369)
5 13 23 37 47 61 73 89...(A031336)

Crossrefs

Cf. A115302.

Formula

a(n) = A000040(a(p+3q) = a(p)+3q) with p and q positive integers.
a(n) = PrimePi(a(p+3q) = a(p)+3q) with p and q positive integers.
Showing 1-6 of 6 results.