A115322 Triangle of coefficients of Pell polynomials.
1, 0, 2, 1, 0, 4, 0, 4, 0, 8, 1, 0, 12, 0, 16, 0, 6, 0, 32, 0, 32, 1, 0, 24, 0, 80, 0, 64, 0, 8, 0, 80, 0, 192, 0, 128, 1, 0, 40, 0, 240, 0, 448, 0, 256, 0, 10, 0, 160, 0, 672, 0, 1024, 0, 512, 1, 0, 60, 0, 560, 0, 1792, 0, 2304, 0, 1024, 0, 12, 0, 280, 0, 1792, 0, 4608, 0, 5120, 0, 2048
Offset: 1
Examples
1, 2*x, 1 + 4*x^2, 4*x + 8*x^3, 1 + 12*x^2 + 16*x^4, ... Triangle begins: [n\k] 0 1 2 3 4 5 6 7 8 9 10 ---------------------------------------------------------- [1 ] 1; [2 ] 0, 2; [3 ] 1, 0, 4; [4 ] 0, 4, 0, 8; [5 ] 1, 0, 12, 0, 16; [6 ] 0, 6, 0, 32, 0, 32; [7 ] 1, 0, 24, 0, 80, 0, 64; [8 ] 0, 8, 0, 80, 0, 192, 0, 128; [9 ] 1, 0, 40, 0, 240, 0, 448, 0, 256; [10] 0, 10, 0, 160, 0, 672, 0, 1024, 0, 512; [11] 1, 0, 60, 0, 560, 0, 1792, 0, 2304, 0, 1024; ... - _Franck Maminirina Ramaharo_, Aug 06 2025
Links
- Jonathan L. Gross and Thomas W. Tucker, A Celtic Framework for Knots and Links, Discrete & Computational Geometry 46 (2011), 86-99.
- Eric Weisstein's World of Mathematics, Pell Polynomial
Programs
-
Maple
A115322 := (n, k) -> ifelse(irem(n - k, 2) = 0, 0, binomial((n + k - 1)/2, k)*2^k); seq(print(seq(A115322(n, k), k = 0..n-1)), n = 1..10); # Peter Luschny, Aug 06 2025
-
Mathematica
Flatten[Table[CoefficientList[Fibonacci[n, 2 x], x], {n, 0, 20}]] (* Emanuele Munarini, Dec 01 2017 *)
-
Maxima
T(n, k) := if mod(n - k, 2) = 0 then 0 else binomial((n + k - 1)/2, k)*2^k$ create_list(T(n, k), n, 1, 10, k, 0, n - 1); /* Franck Maminirina Ramaharo, Aug 06 2025 */
Formula
G.f. for n-th row is Fibonacci(n, 2*x).
From Franck Maminirina Ramaharo, Aug 06 2025: (Start)
Row n = coefficients in the expansion of ((x + srt(x^2 + 1))^n - (x - sqrt(x^2 + 1))^n)/(2*sqrt(x^2 + 1)).
T(n,k) = 0 if n == k (mod 2) else T(n,k) = (2^k)*binomial((n + k - 1)/2, k).
G.f.: y/(1 - 2 x*y - y^2).
(End)
Comments