cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A115322 Triangle of coefficients of Pell polynomials.

Original entry on oeis.org

1, 0, 2, 1, 0, 4, 0, 4, 0, 8, 1, 0, 12, 0, 16, 0, 6, 0, 32, 0, 32, 1, 0, 24, 0, 80, 0, 64, 0, 8, 0, 80, 0, 192, 0, 128, 1, 0, 40, 0, 240, 0, 448, 0, 256, 0, 10, 0, 160, 0, 672, 0, 1024, 0, 512, 1, 0, 60, 0, 560, 0, 1792, 0, 2304, 0, 1024, 0, 12, 0, 280, 0, 1792, 0, 4608, 0, 5120, 0, 2048
Offset: 1

Views

Author

Eric W. Weisstein, Jan 20 2006

Keywords

Comments

Aside from signs, same as A053117.
Row n gives the coefficients in the expansion of the Alexander-Conway polynomial for the barrier-free Celtic link CK_4^(2n). - Franck Maminirina Ramaharo, Aug 06 2025

Examples

			1, 2*x, 1 + 4*x^2, 4*x + 8*x^3, 1 + 12*x^2 + 16*x^4, ...
Triangle begins:
  [n\k] 0   1   2    3    4    5     6    7    8     9    10
  ----------------------------------------------------------
  [1 ]  1;
  [2 ]  0,  2;
  [3 ]  1,  0,  4;
  [4 ]  0,  4,  0,   8;
  [5 ]  1,  0, 12,   0,  16;
  [6 ]  0,  6,  0,  32,   0,  32;
  [7 ]  1,  0, 24,   0,  80,   0,   64;
  [8 ]  0,  8,  0,  80,   0, 192,    0,  128;
  [9 ]  1,  0, 40,   0, 240,   0,  448,    0,  256;
  [10]  0, 10,  0, 160,   0, 672,    0, 1024,    0, 512;
  [11]  1,  0, 60,   0, 560,   0, 1792,    0, 2304,   0, 1024;
... - _Franck Maminirina Ramaharo_, Aug 06 2025
		

Crossrefs

Cf. A053117, A049310, A000129 (row sums).

Programs

  • Maple
    A115322 := (n, k) -> ifelse(irem(n - k, 2) = 0, 0, binomial((n + k - 1)/2, k)*2^k);
    seq(print(seq(A115322(n, k), k = 0..n-1)), n = 1..10);  # Peter Luschny, Aug 06 2025
  • Mathematica
    Flatten[Table[CoefficientList[Fibonacci[n, 2 x], x], {n, 0, 20}]] (* Emanuele Munarini, Dec 01 2017 *)
  • Maxima
    T(n, k) := if mod(n - k, 2) = 0 then 0 else  binomial((n + k - 1)/2, k)*2^k$
    create_list(T(n, k), n, 1, 10, k, 0, n - 1); /* Franck Maminirina Ramaharo, Aug 06 2025 */

Formula

G.f. for n-th row is Fibonacci(n, 2*x).
From Franck Maminirina Ramaharo, Aug 06 2025: (Start)
Row n = coefficients in the expansion of ((x + srt(x^2 + 1))^n - (x - sqrt(x^2 + 1))^n)/(2*sqrt(x^2 + 1)).
T(n,k) = 0 if n == k (mod 2) else T(n,k) = (2^k)*binomial((n + k - 1)/2, k).
G.f.: y/(1 - 2 x*y - y^2).
(End)