A115334 Numbers d > 0 such that 3+2d and 3+4d are primes.
1, 2, 4, 5, 7, 10, 14, 17, 19, 20, 25, 32, 34, 40, 47, 49, 52, 55, 62, 67, 77, 82, 89, 94, 95, 104, 110, 115, 119, 124, 130, 140, 154, 157, 164, 172, 185, 209, 214, 215, 220, 227, 229, 242, 259, 272, 280, 287, 292, 305, 307, 314, 319, 320, 322, 325, 329, 349, 362
Offset: 1
Keywords
Examples
5 is in the sequence because 3 + 2*5 = 13 and 3 + 4*5 = 23 are both prime.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A160394. [Klaus Brockhaus, May 14 2009]
Programs
-
Magma
[ n: n in [1..365] | IsPrime(3+2*n) and IsPrime(3+4*n) ]; /* Klaus Brockhaus, May 14 2009 */
-
Mathematica
Do[If[PrimeQ[{3+2d,3+4d}]=={True,True},Print[d]],{d,100000}] Select[Range[400],And@@PrimeQ[{3+2#,3+4#}]&] (* Harvey P. Dale, Sep 02 2013 *)
-
Python
from sympy import isprime from itertools import count, islice def agen(): # generator of terms yield from (d for d in count(1) if isprime(3+2*d) and isprime(3+4*d)) print(list(islice(agen(), 60))) # Michael S. Branicky, Jun 20 2022
Formula
a(n) = A206037(n)/2. - Wesley Ivan Hurt, Feb 06 2014
Comments