A193588
A Fibonacci triangle: T(n,k) = Fib(k+2) for 0 <= k <= n.
Original entry on oeis.org
1, 1, 2, 1, 2, 3, 1, 2, 3, 5, 1, 2, 3, 5, 8, 1, 2, 3, 5, 8, 13, 1, 2, 3, 5, 8, 13, 21, 1, 2, 3, 5, 8, 13, 21, 34, 1, 2, 3, 5, 8, 13, 21, 34, 55, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233
Offset: 0
First 5 rows of A193588:
1;
1, 2;
1, 2, 3;
1, 2, 3, 5;
1, 2, 3, 5, 8;
-
(See A193589, the augmentation of A193588.)
Table[Fibonacci[k+2],{n,0,20},{k,0,n}]//Flatten (* Harvey P. Dale, Nov 29 2017 *)
Module[{nn=15,fibs},fibs=Fibonacci[Range[2,nn]];Table[Take[fibs,n],{n,nn-1}]]// Flatten (* Harvey P. Dale, Mar 02 2023 *)
A135392
A triangular sequence from a general proportionality to modular function polynomial triangular function.
Original entry on oeis.org
-1, -1, 1, 1, -1, 2, 3, 1, -1, 3, 6, 4, 1, -1, 4, 10, 10, 5, 1, -1, 5, 15, 20, 15, 6, 1, -1, 6, 21, 35, 35, 21, 7, 1, -1, 7, 28, 56, 70, 56, 28, 8, 1, -1, 8, 36, 84, 126, 126, 84, 36, 9, 1, -1, 9, 45, 120, 210, 252, 210, 120, 45, 10, 1, -1, 10, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1
Offset: 1
{-1},
{-1, 1, 1},
{-1, 2, 3, 1},
{-1, 3, 6, 4, 1},
{-1, 4, 10, 10,5, 1},
{-1, 5, 15, 20, 15, 6, 1},
{-1, 6, 21, 35, 35, 21, 7, 1},
{-1, 7, 28, 56, 70, 56, 28, 8, 1},
{-1, 8, 36, 84, 126, 126, 84, 36, 9, 1},
{-1, 9, 45, 120, 210, 252, 210, 120, 45, 10, 1},
{-1, 10, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1}
- Markku Halmetoja, et al.,"On Direct and Inverse Proportionality", American Math Monthly, volume 114, number 10, Dec 2007, pages 871-881.
- McKean and Moll, Elliptic Curves, Function Theory,Geometry, Arithmetic, Cambridge University Press, New York, 199, page 172
-
f[x_, n_] = (c*x + d)^(2*n + 1) - (a*x + b) a = 1; c = 1; b = 2; d = 1; Table[CoefficientList[f[x, n], x], {n, 0, 5, 1/2}] Flatten[%]
Showing 1-2 of 2 results.
Comments