A115398 Numbers k such that both k^2+1 and 2^k + 1 are semiprimes.
3, 5, 11, 12, 19, 28, 61, 64, 79, 92, 101, 104, 199, 356, 596, 692, 1709, 3539, 3824
Offset: 1
Examples
11 is a term because 11^2 + 1 = 122 = 2*61 (semiprime) and 2^11 + 1 = 2049 = 3*683 (semiprime).
Programs
-
Magma
IsSemiprime:=func
; [n: n in [2..700] | IsSemiprime(n^2+1) and IsSemiprime(2^n+1)]; // Vincenzo Librandi, Oct 10 2013 -
Mathematica
Select[Range[700],PrimeOmega[#^2+1]==PrimeOmega[2^#+1]==2&] (* Harvey P. Dale, Apr 14 2019 *)
-
PARI
isok(n) = (bigomega(n^2+1) == 2) && (bigomega(2^n+1) == 2); \\ Michel Marcus, Oct 10 2013
Extensions
a(17)-a(19) from Robert Israel, Nov 27 2023
Comments