cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A115636 A divide-and-conquer number triangle.

Original entry on oeis.org

1, 1, -1, 4, 0, 1, 4, 0, 1, -1, 4, -4, 0, 0, 1, 4, -4, 0, 0, 1, -1, 16, 0, 4, 0, 0, 0, 1, 16, 0, 4, 0, 0, 0, 1, -1, 16, 0, 4, -4, 0, 0, 0, 0, 1, 16, 0, 4, -4, 0, 0, 0, 0, 1, -1, 16, -16, 0, 0, 4, 0, 0, 0, 0, 0, 1, 16, -16, 0, 0, 4, 0, 0, 0, 0, 0, 1, -1, 16, -16, 0, 0, 4, -4, 0, 0, 0, 0, 0, 0, 1, 16, -16, 0, 0, 4, -4, 0, 0, 0, 0, 0, 0, 1, -1
Offset: 0

Views

Author

Paul Barry, Jan 27 2006

Keywords

Examples

			Triangle begins
   1;
   1,  -1;
   4,   0,  1;
   4,   0,  1, -1;
   4,  -4,  0,  0,  1;
   4,  -4,  0,  0,  1, -1;
  16,   0,  4,  0,  0,  0,  1;
  16,   0,  4,  0,  0,  0,  1, -1;
  16,   0,  4, -4,  0,  0,  0,  0,  1;
  16,   0,  4, -4,  0,  0,  0,  0,  1, -1;
  16, -16,  0,  0,  4,  0,  0,  0,  0,  0,  1;
  16, -16,  0,  0,  4,  0,  0,  0,  0,  0,  1, -1;
  16, -16,  0,  0,  4, -4,  0,  0,  0,  0,  0,  0,  1;
  16, -16,  0,  0,  4, -4,  0,  0,  0,  0,  0,  0,  1, -1;
  64,   0, 16,  0,  0,  0,  4,  0,  0,  0,  0,  0,  0,  0,  1;
  64,   0, 16,  0,  0,  0,  4,  0,  0,  0,  0,  0,  0,  0,  1, -1;
  64,   0, 16,  0,  0,  0,  4, -4,  0,  0,  0,  0,  0,  0,  0,  0,  1;
		

Crossrefs

Cf. A115633 (inverse), A115637 (row sums), A115639 (first column).

Programs

  • Mathematica
    A115633[n_, k_]:= If[k==n, (-1)^n, If[k==n-1, Mod[n,2], If[n==2*k+2, -4, 0]]];
    T[n_, k_]:= T[n, k]= (-1)^k*If[k==n, 1, -Sum[T[n, j]*A115633[j, k], {j,k+1,n}] ];
    Table[T[n, k], {n,0,18}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 24 2021 *)
  • Sage
    @CachedFunction
    def A115633(n, k):
        if (k==n): return (-1)^n
        elif (k==n-1): return n%2
        elif (n==2*k+2): return -4
        else: return 0
    def A115636(n,k):
        if (k==0): return 4^(floor(log(n+2, 2)) -1)
        elif (k==n): return (-1)^n
        elif (k==n-1): return (n%2)
        else: return (-1)^(k+1)*sum( A115636(n, j)*A115633(j, k) for j in (k+1..n) )
    flatten([[A115636(n, k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Nov 24 2021

Formula

T(n, 0) = A115639(n).
Sum_{k=0..n} T(n, k) = A115637(n).
T(n, k) = (-1)^k*( 1 if k = n otherwise (-1)*Sum_{j=k+1..n} T(n, j)*A115633(j, k) ). - G. C. Greubel, Nov 24 2021

A115715 A divide-and-conquer triangle.

Original entry on oeis.org

1, 1, 1, 4, 0, 1, 4, 0, 1, 1, 4, 4, 0, 0, 1, 4, 4, 0, 0, 1, 1, 16, 0, 4, 0, 0, 0, 1, 16, 0, 4, 0, 0, 0, 1, 1, 16, 0, 4, 4, 0, 0, 0, 0, 1, 16, 0, 4, 4, 0, 0, 0, 0, 1, 1, 16, 16, 0, 0, 4, 0, 0, 0, 0, 0, 1, 16, 16, 0, 0, 4, 0, 0, 0, 0, 0, 1, 1, 16, 16, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0, 1, 16, 16, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0, 1, 1
Offset: 0

Views

Author

Paul Barry, Jan 29 2006

Keywords

Examples

			Triangle begins
   1;
   1,  1;
   4,  0,  1;
   4,  0,  1,  1;
   4,  4,  0,  0,  1;
   4,  4,  0,  0,  1,  1;
  16,  0,  4,  0,  0,  0,  1;
  16,  0,  4,  0,  0,  0,  1,  1;
  16,  0,  4,  4,  0,  0,  0,  0,  1;
  16,  0,  4,  4,  0,  0,  0,  0,  1,  1;
  16, 16,  0,  0,  4,  0,  0,  0,  0,  0,  1;
  16, 16,  0,  0,  4,  0,  0,  0,  0,  0,  1,  1;
  16, 16,  0,  0,  4,  4,  0,  0,  0,  0,  0,  0,  1;
  16, 16,  0,  0,  4,  4,  0,  0,  0,  0,  0,  0,  1,  1;
  64,  0, 16,  0,  0,  0,  4,  0,  0,  0,  0,  0,  0,  0,  1;
  64,  0, 16,  0,  0,  0,  4,  0,  0,  0,  0,  0,  0,  0,  1,  1;
  64,  0, 16,  0,  0,  0,  4,  4,  0,  0,  0,  0,  0,  0,  0,  0,  1;
		

Crossrefs

Cf. A032925 (row sums), A115639 (first column), A115713 (inverse).

Programs

  • Maple
    A115715 := proc(n,k)
        option remember;
        if n = k then
            1;
        elif k > n then
            0;
        else
            -add(procname(n,l)*A115713(l,k),l=k+1..n) ;
        end if;
    end proc:
    seq(seq(A115715(n,k),k=0..n),n=0..13) ; # R. J. Mathar, Sep 07 2016
  • Mathematica
    A115713[n_, k_]:= If[k==n, 1, If[k==n-1, ((-1)^n-1)/2, If[n==2*k+2, -4, 0]]];
    T[n_, k_]:= T[n, k]= If[k==n, 1, -Sum[T[n, j]*A115713[j, k], {j, k+1, n}]];
    Table[T[n, k], {n,0,18}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 23 2021 *)
  • Sage
    @CachedFunction
    def A115713(n,k):
        if (k==n): return 1
        elif (k==n-1): return -(n%2)
        elif (n==2*k+2): return -4
        else: return 0
    def A115715(n,k):
        if (k==0): return 4^(floor(log(n+2, 2)) -1)
        elif (k==n): return 1
        elif (k==n-1): return (n%2)
        else: return (-1)*sum( A115715(n,j)*A115713(j,k) for j in (k+1..n) )
    flatten([[A115715(n,k) for k in (0..n)] for n in (0..18)]) # G. C. Greubel, Nov 23 2021

Formula

Sum_{=0..n} T(n, k) = A032925(n).
T(n, 0) = A115639(n).
T(n, k) = 1 if n = k, otherwise T(n, k) = (-1)*Sum_{j=k+1..n} T(n, j)*A115713(j, k). - R. J. Mathar, Sep 07 2016
Showing 1-2 of 2 results.