cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A115639 First column of divide-and-conquer triangle A115636.

Original entry on oeis.org

1, 1, 4, 4, 4, 4, 16, 16, 16, 16, 16, 16, 16, 16, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256
Offset: 0

Views

Author

Paul Barry, Jan 27 2006

Keywords

Crossrefs

Programs

  • Magma
    [4^(Ilog2(n+2) -1) : n in [0..80] ]; // G. C. Greubel, Nov 23 2021
    
  • Mathematica
    4^(Floor[Log[2, Range[0, 80] +2]] -1) (* G. C. Greubel, Nov 23 2021 *)
  • Sage
    [4^(floor(log(n+2, 2)) -1) for n in (0..80)] # G. C. Greubel, Nov 23 2021

Formula

G.f.: (1/(1-x))*( 1/4 + (3/4)*Sum_{k>=1} 4^(k-1)*x^(2^k-2) ).
a(n) = 4^(floor(log_2(n+2)) - 1). - G. C. Greubel, Nov 23 2021

A115633 A divide and conquer-related triangle: see formula for T(n,k), n >= k >= 0.

Original entry on oeis.org

1, 1, -1, -4, 0, 1, 0, 0, 1, -1, 0, -4, 0, 0, 1, 0, 0, 0, 0, 1, -1, 0, 0, -4, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, -4, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Paul Barry, Jan 27 2006

Keywords

Examples

			Triangle begins
   1;
   1, -1;
  -4,  0,  1;
   0,  0,  1, -1;
   0, -4,  0,  0,  1;
   0,  0,  0,  0,  1, -1;
   0,  0, -4,  0,  0,  0,  1;
   0,  0,  0,  0,  0,  0,  1, -1;
   0,  0,  0, -4,  0,  0,  0,  0,  1;
   0,  0,  0,  0,  0,  0,  0,  0,  1, -1;
   0,  0,  0,  0, -4,  0,  0,  0,  0,  0,  1;
   0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1, -1;
   0,  0,  0,  0,  0, -4,  0,  0,  0,  0,  0,  0,  1;
   0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1, -1;
   0,  0,  0,  0,  0,  0, -4,  0,  0,  0,  0,  0,  0,  0,  1;
   0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1, -1;
   0,  0,  0,  0,  0,  0,  0, -4,  0,  0,  0,  0,  0,  0,  0,  0, 1;
		

Crossrefs

Cf. A115634 (row sums), A115635 (diagonal sums), A115636 (inverse).

Programs

  • Mathematica
    T[n_, k_]:= If[k==n, (-1)^n, If[k==n-1, (1-(-1)^n)/2, If[n==2*k+2, -4, 0]]];
    Table[T[n, k], {n,0,18}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 23 2021 *)
  • PARI
    A115633(n,k)=if(n==k, (-1)^n, bittest(n,0), k==n-1, k+1==n\2, -4) \\ M. F. Hasler, Nov 24 2021
  • Sage
    def A115633(n,k):
        if (k==n): return (-1)^n
        elif (k==n-1): return n%2
        elif (n==2*k+2): return -4
        else: return 0
    flatten([[A115633(n,k) for k in (0..n)] for n in (0..18)]) # G. C. Greubel, Nov 23 2021
    

Formula

T(n, k) = (-1)^n if n = k; else -4 if n = 2k+2; else (n mod 2) if n = k+1; else 0.
G.f.: (1+x-x*y)/(1-x^2*y^2) - 4*x^2/(1-x^2*y).
(1, -x) + (x, x)/2 + (x, -x)/2 - 4(x^2, x^2) expressed in the notation of stretched Riordan arrays.
Column k has g.f.: (-x)^k + (x*(-x)^k + x^(k+1))/2 - 4*x^(2*k+2).
Sum_{k=0..n} T(n, k) = A115634(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A115635(n).

A115637 In the binary expansion of n+2, transform 0->1 and 1->0 then interpret as base 4.

Original entry on oeis.org

1, 0, 5, 4, 1, 0, 21, 20, 17, 16, 5, 4, 1, 0, 85, 84, 81, 80, 69, 68, 65, 64, 21, 20, 17, 16, 5, 4, 1, 0, 341, 340, 337, 336, 325, 324, 321, 320, 277, 276, 273, 272, 261, 260, 257, 256, 85, 84, 81, 80, 69, 68, 65, 64, 21, 20, 17, 16, 5, 4, 1, 0, 1365, 1364, 1361, 1360, 1349
Offset: 0

Views

Author

Paul Barry, Jan 27 2006

Keywords

Comments

Row sums of number triangle A115636. Partial sums of A115638.
Old name was "A divide and conquer sequence".

Crossrefs

Cf. A000695, A035327, A115633, A115636, A115638 (first differences), A374625.

Programs

  • Maple
    b:= n-> 1-(n mod 2)+`if`(n<2, 0, b(iquo(n, 2))*4):
    a:= n-> b(n+2):
    seq(a(n), n=0..66);  # Alois P. Heinz, Jul 16 2024
  • Mathematica
    A115637[n_] := FromDigits[1 - IntegerDigits[n + 2, 2], 4];
    Array[A115637, 100, 0] (* Paolo Xausa, Jul 16 2024 *)
  • PARI
    up_to = 1024;
    A115633array(n, k) = (((-1)^n)*if(n==k,1, if((k+k+2)==n, -4, if((k+1)==n, -(1+(-1)^k)/2, 0))));
    A115637list(up_to) = { my(mA115633=matrix(up_to,up_to,n,k,A115633array(n-1,k-1)), mA115636 = matsolve(mA115633,matid(up_to)), v = vector(up_to)); for(n=1,up_to,v[n] = vecsum(mA115636[n,])); (v); };
    v115637 = A115637list(up_to+1);
    A115637(n) = v115637[1+n]; \\ Antti Karttunen, Nov 02 2018
    
  • PARI
    a(n) = fromdigits([!b |b<-binary(n+2)], 4); \\ Kevin Ryde, Jul 15 2024
    
  • Python
    def A115637(n): return int(bin((~(n+2))^(-1<<(n+2).bit_length()))[2:],4) # Chai Wah Wu, Jul 17 2024

Formula

G.f.: (1/(1-x))*Sum_{k>=0} 4^k*x^(2^(k+1)-2)/(1+x^(2^k)); the g.f. G(x) satisfies G(x) - 4(1+x)*x^2*G(x^2) = 1/(1-x^2).
a(n) = A000695(A035327(n+2)). - Kevin Ryde, Jul 15 2024

Extensions

New name from Kevin Ryde, Jul 15 2024
Showing 1-3 of 3 results.