A115636 A divide-and-conquer number triangle.
1, 1, -1, 4, 0, 1, 4, 0, 1, -1, 4, -4, 0, 0, 1, 4, -4, 0, 0, 1, -1, 16, 0, 4, 0, 0, 0, 1, 16, 0, 4, 0, 0, 0, 1, -1, 16, 0, 4, -4, 0, 0, 0, 0, 1, 16, 0, 4, -4, 0, 0, 0, 0, 1, -1, 16, -16, 0, 0, 4, 0, 0, 0, 0, 0, 1, 16, -16, 0, 0, 4, 0, 0, 0, 0, 0, 1, -1, 16, -16, 0, 0, 4, -4, 0, 0, 0, 0, 0, 0, 1, 16, -16, 0, 0, 4, -4, 0, 0, 0, 0, 0, 0, 1, -1
Offset: 0
Examples
Triangle begins 1; 1, -1; 4, 0, 1; 4, 0, 1, -1; 4, -4, 0, 0, 1; 4, -4, 0, 0, 1, -1; 16, 0, 4, 0, 0, 0, 1; 16, 0, 4, 0, 0, 0, 1, -1; 16, 0, 4, -4, 0, 0, 0, 0, 1; 16, 0, 4, -4, 0, 0, 0, 0, 1, -1; 16, -16, 0, 0, 4, 0, 0, 0, 0, 0, 1; 16, -16, 0, 0, 4, 0, 0, 0, 0, 0, 1, -1; 16, -16, 0, 0, 4, -4, 0, 0, 0, 0, 0, 0, 1; 16, -16, 0, 0, 4, -4, 0, 0, 0, 0, 0, 0, 1, -1; 64, 0, 16, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 1; 64, 0, 16, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 1, -1; 64, 0, 16, 0, 0, 0, 4, -4, 0, 0, 0, 0, 0, 0, 0, 0, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Mathematica
A115633[n_, k_]:= If[k==n, (-1)^n, If[k==n-1, Mod[n,2], If[n==2*k+2, -4, 0]]]; T[n_, k_]:= T[n, k]= (-1)^k*If[k==n, 1, -Sum[T[n, j]*A115633[j, k], {j,k+1,n}] ]; Table[T[n, k], {n,0,18}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 24 2021 *)
-
Sage
@CachedFunction def A115633(n, k): if (k==n): return (-1)^n elif (k==n-1): return n%2 elif (n==2*k+2): return -4 else: return 0 def A115636(n,k): if (k==0): return 4^(floor(log(n+2, 2)) -1) elif (k==n): return (-1)^n elif (k==n-1): return (n%2) else: return (-1)^(k+1)*sum( A115636(n, j)*A115633(j, k) for j in (k+1..n) ) flatten([[A115636(n, k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Nov 24 2021
Formula
T(n, 0) = A115639(n).
Sum_{k=0..n} T(n, k) = A115637(n).
T(n, k) = (-1)^k*( 1 if k = n otherwise (-1)*Sum_{j=k+1..n} T(n, j)*A115633(j, k) ). - G. C. Greubel, Nov 24 2021
Comments