A115754 Decimal expansion of sqrt(3/2).
1, 2, 2, 4, 7, 4, 4, 8, 7, 1, 3, 9, 1, 5, 8, 9, 0, 4, 9, 0, 9, 8, 6, 4, 2, 0, 3, 7, 3, 5, 2, 9, 4, 5, 6, 9, 5, 9, 8, 2, 9, 7, 3, 7, 4, 0, 3, 2, 8, 3, 3, 5, 0, 6, 4, 2, 1, 6, 3, 4, 6, 2, 8, 3, 6, 2, 5, 4, 8, 0, 1, 8, 8, 7, 2, 8, 6, 5, 7, 5, 1, 3, 2, 6, 9, 9, 2, 9, 7, 1, 6, 5, 5, 2, 3, 2, 0, 1, 1
Offset: 1
Examples
1.2247448713915890490986420373529456959829737403283350642163...
Links
- Daniel Starodubtsev, Table of n, a(n) for n = 1..10000
- Ana Rechtman, Mars 2016, 3e défi, Images des Mathématiques, CNRS, 2016.
- A. H. Stroud and D. Secrest, Approximate integration formulas for certain spherically symmetric regions, Math. Comp. 17 (82) (1963) 105.
- Index entries for algebraic numbers, degree 2
Crossrefs
Programs
-
Mathematica
RealDigits[Sqrt[3/2], 10, 105][[1]] (* Alonso del Arte, Dec 11 2012 *)
Formula
Equals 2*A187110.
Equals Sum_{k>=0} binomial(1/2, k)/2^k. - Bruno Berselli, Sep 11 2015
From Amiram Eldar, Aug 02 2020: (Start)
Equals Product_{k>=0} (1 + (-1)^k/(6*k + 3)).
Equals Sum_{k>=0} binomial(2*k,k)/12^k.
Equals 1 + Sum_{k>=1} (2*k - 1)!!/((2*k)!! * 3^k). (End)
Equals A010464/2. - R. J. Mathar, Feb 23 2021
Comments