A198755 Decimal expansion of x>0 satisfying x^2+cos(x)=2.
1, 3, 2, 5, 6, 2, 2, 5, 1, 8, 1, 4, 7, 5, 3, 6, 6, 2, 3, 4, 8, 3, 2, 2, 9, 0, 2, 9, 3, 8, 7, 9, 8, 7, 4, 4, 3, 3, 0, 4, 5, 4, 6, 7, 2, 5, 6, 5, 7, 6, 6, 4, 9, 5, 2, 6, 2, 7, 4, 0, 1, 8, 5, 3, 2, 0, 0, 8, 9, 5, 0, 6, 1, 6, 5, 9, 3, 0, 2, 4, 6, 5, 0, 3, 4, 1, 1, 0, 9, 7, 5, 9, 7, 7, 5, 7, 5, 6, 7
Offset: 1
Examples
1.32562251814753662348322902938798744330...
Programs
-
Mathematica
(* Program 1: A198655 *) a = 1; b = 1; c = 2; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, 1.32, 1.33}, WorkingPrecision -> 110] RealDigits[r] (* A198755 *) (* Program 2: implicit surface of x^2+u*cos(x)=v *) f[{x_, u_, v_}] := x^2 + u*Cos[x] - v; t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 0, 3}]}, {u, -5, 4}, {v, u, 20}]; ListPlot3D[Flatten[t, 1]] (* for A198755 *)
Comments