cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 99 results. Next

A272026 Triangle read by rows: T(n,k), n>=1, k>=1, in which column k lists the numbers A016945 interleaved with k-1 zeros, and the first element of column k is in row k(k+1)/2.

Original entry on oeis.org

3, 9, 15, 3, 21, 0, 27, 9, 33, 0, 3, 39, 15, 0, 45, 0, 0, 51, 21, 9, 57, 0, 0, 3, 63, 27, 0, 0, 69, 0, 15, 0, 75, 33, 0, 0, 81, 0, 0, 9, 87, 39, 21, 0, 3, 93, 0, 0, 0, 0, 99, 45, 0, 0, 0, 105, 0, 27, 15, 0, 111, 51, 0, 0, 0, 117, 0, 0, 0, 9, 123, 57, 33, 0, 0, 3, 129, 0, 0, 21, 0, 0, 135, 63, 0, 0, 0, 0, 141, 0, 39, 0, 0, 0
Offset: 1

Views

Author

Omar E. Pol, Apr 18 2016

Keywords

Comments

Alternating sum of row n equals 3 times sigma(n), i.e., Sum_{k=1..A003056(n)} (-1)^(k-1)*T(n,k) = 3*A000203(n) = A272027(n).
Row n has length A003056(n) hence the first element of column k is in row A000217(k).
The number of positive terms in row n is A001227(n).
If T(n,k) = 9 then T(n+1,k+1) = 3 is the first element of the column k+1.
For more information see A196020.

Examples

			Triangle begins:
    3;
    9;
   15,  3;
   21,  0;
   27,  9;
   33,  0,  3;
   39, 15,  0;
   45,  0,  0;
   51, 21,  9;
   57,  0,  0,  3;
   63, 27,  0,  0;
   69,  0, 15,  0;
   75, 33,  0,  0;
   81,  0,  0,  9;
   87, 39, 21,  0,  3;
   93,  0,  0,  0,  0;
   99, 45,  0,  0,  0;
  105,  0, 27, 15,  0;
  111, 51,  0,  0,  0;
  117,  0,  0,  0,  9;
  123, 57, 33,  0,  0,  3;
  129,  0,  0, 21,  0,  0;
  135, 63,  0,  0,  0,  0;
  141,  0, 39,  0,  0,  0;
  ...
For n = 9 the divisors of 9 are 1, 3, 9, therefore the sum of the divisors of 9 is 1 + 3 + 9 = 13 and 3*13 = 39. On the other hand the 9th row of triangle is 51, 21, 9, therefore the alternating row sum is 51 - 21 + 9 = 39, equaling 3 times sigma(9).
		

Crossrefs

Formula

T(n,k) = 3*A196020(n,k) = A196020(n,k) + A236106(n,k).

A007310 Numbers congruent to 1 or 5 mod 6.

Original entry on oeis.org

1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49, 53, 55, 59, 61, 65, 67, 71, 73, 77, 79, 83, 85, 89, 91, 95, 97, 101, 103, 107, 109, 113, 115, 119, 121, 125, 127, 131, 133, 137, 139, 143, 145, 149, 151, 155, 157, 161, 163, 167, 169, 173, 175
Offset: 1

Views

Author

C. Christofferson (Magpie56(AT)aol.com)

Keywords

Comments

Numbers n such that phi(4n) = phi(3n). - Benoit Cloitre, Aug 06 2003
Or, numbers relatively prime to 2 and 3, or coprime to 6, or having only prime factors >= 5; also known as 5-rough numbers. (Edited by M. F. Hasler, Nov 01 2014: merged with comments from Zak Seidov, Apr 26 2007 and Michael B. Porter, Oct 09 2009)
Apart from initial term(s), dimension of the space of weight 2n cuspidal newforms for Gamma_0( 38 ).
Numbers k such that k mod 2 = 1 and (k+1) mod 3 <> 1. - Klaus Brockhaus, Jun 15 2004
Also numbers n such that the sum of the squares of the first n integers is divisible by n, or A000330(n) = n*(n+1)*(2*n+1)/6 is divisible by n. - Alexander Adamchuk, Jan 04 2007
Numbers n such that the sum of squares of n consecutive integers is divisible by n, because A000330(m+n) - A000330(m) = n*(n+1)*(2*n+1)/6 + n*(m^2+n*m+m) is divisible by n independent of m. - Kaupo Palo, Dec 10 2016
A126759(a(n)) = n + 1. - Reinhard Zumkeller, Jun 16 2008
Terms of this sequence (starting from the second term) are equal to the result of the expression sqrt(4!*(k+1) + 1) - but only when this expression yields integral values (that is when the parameter k takes values, which are terms of A144065). - Alexander R. Povolotsky, Sep 09 2008
For n > 1: a(n) is prime if and only if A075743(n-2) = 1; a(2*n-1) = A016969(n-1), a(2*n) = A016921(n-1). - Reinhard Zumkeller, Oct 02 2008
A156543 is a subsequence. - Reinhard Zumkeller, Feb 10 2009
Numbers n such that ChebyshevT(x, x/2) is not an integer (is integer/2). - Artur Jasinski, Feb 13 2010
If 12*k + 1 is a perfect square (k = 0, 2, 4, 10, 14, 24, 30, 44, ... = A152749) then the square root of 12*k + 1 = a(n). - Gary Detlefs, Feb 22 2010
A089128(a(n)) = 1. Complement of A047229(n+1) for n >= 1. See A164576 for corresponding values A175485(a(n)). - Jaroslav Krizek, May 28 2010
Cf. property described by Gary Detlefs in A113801 and in Comment: more generally, these numbers are of the form (2*h*n+(h-4)*(-1)^n-h)/4 (with h, n natural numbers), therefore ((2*h*n+(h-4)*(-1)^n-h)/4)^2-1 == 0 (mod h); in this case, a(n)^2 - 1 == 0 (mod 6). Also a(n)^2 - 1 == 0 (mod 12). - Bruno Berselli, Nov 05 2010 - Nov 17 2010
Numbers n such that ( Sum_{k = 1..n} k^14 ) mod n = 0. (Conjectured) - Gary Detlefs, Dec 27 2011
From Peter Bala, May 02 2018: (Start)
The above conjecture is true. Apply Ireland and Rosen, Proposition 15.2.2. with m = 14 to obtain the congruence 6*( Sum_{k = 1..n} k^14 )/n = 7 (mod n), true for all n >= 1. Suppose n is coprime to 6, then 6 is a unit in Z/nZ, and it follows from the congruence that ( Sum_{k = 1..n} k^14 )/n is an integer. On the other hand, if either 2 divides n or 3 divides n then the congruence shows that ( Sum_{k = 1..n} k^14 )/n cannot be integral. (End)
A126759(a(n)) = n and A126759(m) < n for m < a(n). - Reinhard Zumkeller, May 23 2013
(a(n-1)^2 - 1)/24 = A001318(n), the generalized pentagonal numbers. - Richard R. Forberg, May 30 2013
Numbers k for which A001580(k) is divisible by 3. - Bruno Berselli, Jun 18 2014
Numbers n such that sigma(n) + sigma(2n) = sigma(3n). - Jahangeer Kholdi and Farideh Firoozbakht, Aug 15 2014
a(n) are values of k such that Sum_{m = 1..k-1} m*(k-m)/k is an integer. Sums for those k are given by A062717. Also see Detlefs formula below based on A062717. - Richard R. Forberg, Feb 16 2015
a(n) are exactly those positive integers m such that the sequence b(n) = n*(n + m)*(n + 2*m)/6 is integral, and also such that the sequence c(n) = n*(n + m)*(n + 2*m)*(n + 3*m)/24 is integral. Cf. A007775. - Peter Bala, Nov 13 2015
Along with 2, these are the numbers k such that the k-th Fibonacci number is coprime to every Lucas number. - Clark Kimberling, Jun 21 2016
This sequence is the Engel expansion of 1F2(1; 5/6, 7/6; 1/36) + 1F2(1; 7/6, 11/6; 1/36)/5. - Benedict W. J. Irwin, Dec 16 2016
The sequence a(n), n >= 4 is generated by the successor of the pair of polygonal numbers {P_s(4) + 1, P_(2*s - 1)(3) + 1}, s >= 3. - Ralf Steiner, May 25 2018
The asymptotic density of this sequence is 1/3. - Amiram Eldar, Oct 18 2020
Also, the only vertices in the odd Collatz tree A088975 that are branch values to other odd nodes t == 1 (mod 2) of A005408. - Heinz Ebert, Apr 14 2021
From Flávio V. Fernandes, Aug 01 2021: (Start)
For any two terms j and k, the product j*k is also a term (the same property as p^n and smooth numbers).
From a(2) to a(phi(A033845(n))), or a((A033845(n))/3), the terms are the totatives of the A033845(n) itself. (End)
Also orders n for which cyclic and semicyclic diagonal Latin squares exist (see A123565 and A342990). - Eduard I. Vatutin, Jul 11 2023
If k is in the sequence, then k*2^m + 3 is also in the sequence, for all m > 0. - Jules Beauchamp, Aug 29 2024

Examples

			G.f. = x + 5*x^2 + 7*x^3 + 11*x^4 + 13*x^5 + 17*x^6 + 19*x^7 + 23*x^8 + ...
		

References

  • K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer-Verlag, 1980.

Crossrefs

A005408 \ A016945. Union of A016921 and A016969; union of A038509 and A140475. Essentially the same as A038179. Complement of A047229. Subsequence of A186422.
Cf. A000330, A001580, A002194, A019670, A032528 (partial sums), A038509 (subsequence of composites), A047209, A047336, A047522, A056020, A084967, A090771, A091998, A144065, A175885-A175887.
For k-rough numbers with other values of k, see A000027, A005408, A007775, A008364-A008366, A166061, A166063.
Cf. A126760 (a left inverse).
Row 3 of A260717 (without the initial 1).
Cf. A105397 (first differences).

Programs

Formula

a(n) = (6*n + (-1)^n - 3)/2. - Antonio Esposito, Jan 18 2002
a(n) = a(n-1) + a(n-2) - a(n-3), n >= 4. - Roger L. Bagula
a(n) = 3*n - 1 - (n mod 2). - Zak Seidov, Jan 18 2006
a(1) = 1 then alternatively add 4 and 2. a(1) = 1, a(n) = a(n-1) + 3 + (-1)^n. - Zak Seidov, Mar 25 2006
1 + 1/5^2 + 1/7^2 + 1/11^2 + ... = Pi^2/9 [Jolley]. - Gary W. Adamson, Dec 20 2006
For n >= 3 a(n) = a(n-2) + 6. - Zak Seidov, Apr 18 2007
From R. J. Mathar, May 23 2008: (Start)
Expand (x+x^5)/(1-x^6) = x + x^5 + x^7 + x^11 + x^13 + ...
O.g.f.: x*(1+4*x+x^2)/((1+x)*(1-x)^2). (End)
a(n) = 6*floor(n/2) - 1 + 2*(n mod 2). - Reinhard Zumkeller, Oct 02 2008
1 + 1/5 - 1/7 - 1/11 + + - - ... = Pi/3 = A019670 [Jolley eq (315)]. - Jaume Oliver Lafont, Oct 23 2009
a(n) = ( 6*A062717(n)+1 )^(1/2). - Gary Detlefs, Feb 22 2010
a(n) = 6*A000217(n-1) + 1 - 2*Sum_{i=1..n-1} a(i), with n > 1. - Bruno Berselli, Nov 05 2010
a(n) = 6*n - a(n-1) - 6 for n>1, a(1) = 1. - Vincenzo Librandi, Nov 18 2010
Sum_{n >= 1} (-1)^(n+1)/a(n) = A093766 [Jolley eq (84)]. - R. J. Mathar, Mar 24 2011
a(n) = 6*floor(n/2) + (-1)^(n+1). - Gary Detlefs, Dec 29 2011
a(n) = 3*n + ((n+1) mod 2) - 2. - Gary Detlefs, Jan 08 2012
a(n) = 2*n + 1 + 2*floor((n-2)/2) = 2*n - 1 + 2*floor(n/2), leading to the o.g.f. given by R. J. Mathar above. - Wolfdieter Lang, Jan 20 2012
1 - 1/5 + 1/7 - 1/11 + - ... = Pi*sqrt(3)/6 = A093766 (L. Euler). - Philippe Deléham, Mar 09 2013
1 - 1/5^3 + 1/7^3 - 1/11^3 + - ... = Pi^3*sqrt(3)/54 (L. Euler). - Philippe Deléham, Mar 09 2013
gcd(a(n), 6) = 1. - Reinhard Zumkeller, Nov 14 2013
a(n) = sqrt(6*n*(3*n + (-1)^n - 3)-3*(-1)^n + 5)/sqrt(2). - Alexander R. Povolotsky, May 16 2014
a(n) = 3*n + 6/(9*n mod 6 - 6). - Mikk Heidemaa, Feb 05 2016
From Mikk Heidemaa, Feb 11 2016: (Start)
a(n) = 2*floor(3*n/2) - 1.
a(n) = A047238(n+1) - 1. (suggested by Michel Marcus) (End)
E.g.f.: (2 + (6*x - 3)*exp(x) + exp(-x))/2. - Ilya Gutkovskiy, Jun 18 2016
From Bruno Berselli, Apr 27 2017: (Start)
a(k*n) = k*a(n) + (4*k + (-1)^k - 3)/2 for k>0 and odd n, a(k*n) = k*a(n) + k - 1 for even n. Some special cases:
k=2: a(2*n) = 2*a(n) + 3 for odd n, a(2*n) = 2*a(n) + 1 for even n;
k=3: a(3*n) = 3*a(n) + 4 for odd n, a(3*n) = 3*a(n) + 2 for even n;
k=4: a(4*n) = 4*a(n) + 7 for odd n, a(4*n) = 4*a(n) + 3 for even n;
k=5: a(5*n) = 5*a(n) + 8 for odd n, a(5*n) = 5*a(n) + 4 for even n, etc. (End)
From Antti Karttunen, May 20 2017: (Start)
a(A273669(n)) = 5*a(n) = A084967(n).
a((5*n)-3) = A255413(n).
A126760(a(n)) = n. (End)
a(2*m) = 6*m - 1, m >= 1; a(2*m + 1) = 6*m + 1, m >= 0. - Ralf Steiner, May 17 2018
From Amiram Eldar, Nov 22 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = sqrt(3) (A002194).
Product_{n>=2} (1 + (-1)^n/a(n)) = Pi/3 (A019670). (End)

A006370 The Collatz or 3x+1 map: a(n) = n/2 if n is even, 3n + 1 if n is odd.

Original entry on oeis.org

0, 4, 1, 10, 2, 16, 3, 22, 4, 28, 5, 34, 6, 40, 7, 46, 8, 52, 9, 58, 10, 64, 11, 70, 12, 76, 13, 82, 14, 88, 15, 94, 16, 100, 17, 106, 18, 112, 19, 118, 20, 124, 21, 130, 22, 136, 23, 142, 24, 148, 25, 154, 26, 160, 27, 166, 28, 172, 29, 178, 30, 184, 31, 190, 32, 196, 33
Offset: 0

Views

Author

Keywords

Comments

The 3x+1 or Collatz problem is as follows: start with any number n. If n is even, divide it by 2, otherwise multiply it by 3 and add 1. Do we always reach 1? This is an unsolved problem. It is conjectured that the answer is yes.
The Krasikov-Lagarias paper shows that at least N^0.84 of the positive numbers < N fall into the 4-2-1 cycle of the 3x+1 problem. This is far short of what we think is true, that all positive numbers fall into this cycle, but it is a step. - Richard C. Schroeppel, May 01 2002
Also A001477 and A016957 interleaved. - Omar E. Pol, Jan 16 2014, updated Nov 07 2017
a(n) is the image of a(2*n) under the 3*x+1 map. - L. Edson Jeffery, Aug 17 2014
The positions of powers of 2 in this sequence are given in A160967. - Federico Provvedi, Oct 06 2021
If displayed as a rectangular array with six columns, the columns are A008585, A350521, A016777, A082286, A016789, A350522 (see example). - Omar E. Pol, Jan 03 2022

Examples

			G.f. = 4*x + x^2 + 10*x^3 + 2*x^4 + 16*x^5 + 3*x^6 + 22*x^7 + 4*x^8 + 28*x^9 + ...
From _Omar E. Pol_, Jan 03 2022: (Start)
Written as a rectangular array with six columns read by rows the sequence begins:
   0,   4,  1,  10,  2,  16;
   3,  22,  4,  28,  5,  34;
   6,  40,  7,  46,  8,  52;
   9,  58, 10,  64, 11,  70;
  12,  76, 13,  82, 14,  88;
  15,  94, 16, 100, 17, 106;
  18, 112, 19, 118, 20, 124;
  21, 130, 22, 136, 23, 142;
  24, 148, 25, 154, 26, 160;
  27, 166, 28, 172, 29, 178;
  30, 184, 31, 190, 32, 196;
...
(End)
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, E16.
  • J. C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, Amer. Math. Soc., 2010.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A006577 gives number of steps to reach 1.
Column k=1 of A347270, n >= 1.

Programs

  • Haskell
    a006370 n | m /= 0    = 3 * n + 1
              | otherwise = n' where (n',m) = divMod n 2
    -- Reinhard Zumkeller, Oct 07 2011
    
  • Magma
    [(1/4)*(7*n+2-(-1)^n*(5*n+2)): n in [1..70]]; // Vincenzo Librandi, Dec 20 2016
  • Maple
    f := n-> if n mod 2 = 0 then n/2 else 3*n+1; fi;
    A006370:=(4+z+2*z**2)/(z-1)**2/(1+z)**2; # Simon Plouffe in his 1992 dissertation; uses offset 0
  • Mathematica
    f[n_]:=If[EvenQ[n],n/2,3n+1];Table[f[n],{n,50}] (* Geoffrey Critzer, Jun 29 2013 *)
    LinearRecurrence[{0,2,0,-1},{4,1,10,2},70] (* Harvey P. Dale, Jul 19 2016 *)
  • PARI
    for(n=1,100,print1((1/4)*(7*n+2-(-1)^n*(5*n+2)),","))
    
  • PARI
    A006370(n)=if(n%2,3*n+1,n/2) \\ Michael B. Porter, May 29 2010
    
  • Python
    def A006370(n):
        q, r = divmod(n, 2)
        return 3*n+1 if r else q # Chai Wah Wu, Jan 04 2015
    

Formula

G.f.: (4*x+x^2+2*x^3) / (1-x^2)^2.
a(n) = (1/4)*(7*n+2-(-1)^n*(5*n+2)). - Benoit Cloitre, May 12 2002
a(n) = ((n mod 2)*2 + 1)*n/(2 - (n mod 2)) + (n mod 2). - Reinhard Zumkeller, Sep 12 2002
a(n) = A014682(n+1) * A000034(n). - R. J. Mathar, Mar 09 2009
a(n) = a(a(2*n)) = -A001281(-n) for all n in Z. - Michael Somos, Nov 10 2016
E.g.f.: (2 + x)*sinh(x)/2 + 3*x*cosh(x). - Ilya Gutkovskiy, Dec 20 2016
From Federico Provvedi, Aug 17 2021: (Start)
Dirichlet g.f.: (1-2^(-s))*zeta(s) + (3-5*2^(-s))*zeta(s-1).
a(n) = ( a(n+2k) + a(n-2k) ) / 2, for every integer k. (End)
a(n) + a(n+1) = A047374(n+1). - Leo Ortega, Aug 22 2025

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 27 2001
Zero prepended and new Name from N. J. A. Sloane at the suggestion of M. F. Hasler, Nov 06 2017

A262626 Visible parts of the perspective view of the stepped pyramid whose structure essentially arises after the 90-degree-zig-zag folding of the isosceles triangle A237593.

Original entry on oeis.org

1, 1, 1, 3, 2, 2, 2, 2, 2, 1, 1, 2, 7, 3, 1, 1, 3, 3, 3, 3, 2, 2, 3, 12, 4, 1, 1, 1, 1, 4, 4, 4, 4, 2, 1, 1, 2, 4, 15, 5, 2, 1, 1, 2, 5, 5, 3, 5, 5, 2, 2, 2, 2, 5, 9, 9, 6, 2, 1, 1, 1, 1, 2, 6, 6, 6, 6, 3, 1, 1, 1, 1, 3, 6, 28, 7, 2, 2, 1, 1, 2, 2, 7, 7, 7, 7, 3, 2, 1, 1, 2, 3, 7, 12, 12, 8, 3, 1, 2, 2, 1, 3, 8, 8, 8, 8, 8, 3, 2, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Sep 26 2015

Keywords

Comments

Also the rows of both triangles A237270 and A237593 interleaved.
Also, irregular triangle read by rows in which T(n,k) is the area of the k-th region (from left to right in ascending diagonal) of the n-th symmetric set of regions (from the top to the bottom in descending diagonal) in the two-dimensional diagram of the perspective view of the infinite stepped pyramid described in A245092 (see the diagram in the Links section).
The diagram of the symmetric representation of sigma is also the top view of the pyramid, see Links section. For more information about the diagram see also A237593 and A237270.
The number of cubes at the n-th level is also A024916(n), the sum of all divisors of all positive integers <= n.
Note that this pyramid is also a quarter of the pyramid described in A244050. Both pyramids have infinitely many levels.
Odd-indexed rows are also the rows of the irregular triangle A237270.
Even-indexed rows are also the rows of the triangle A237593.
Lengths of the odd-indexed rows are in A237271.
Lengths of the even-indexed rows give 2*A003056.
Row sums of the odd-indexed rows gives A000203, the sum of divisors function.
Row sums of the even-indexed rows give the positive even numbers (see A005843).
Row sums give A245092.
From the front view of the stepped pyramid emerges a geometric pattern which is related to A001227, the number of odd divisors of the positive integers.
The connection with the odd divisors of the positive integers is as follows: A261697 --> A261699 --> A237048 --> A235791 --> A237591 --> A237593 --> A237270 --> this sequence.

Examples

			Irregular triangle begins:
  1;
  1, 1;
  3;
  2, 2;
  2, 2;
  2, 1, 1, 2;
  7;
  3, 1, 1, 3;
  3, 3;
  3, 2, 2, 3;
  12;
  4, 1, 1, 1, 1, 4;
  4, 4;
  4, 2, 1, 1, 2, 4;
  15;
  5, 2, 1, 1, 2, 5;
  5, 3, 5;
  5, 2, 2, 2, 2, 5;
  9, 9;
  6, 2, 1, 1, 1, 1, 2, 6;
  6, 6;
  6, 3, 1, 1, 1, 1, 3, 6;
  28;
  7, 2, 2, 1, 1, 2, 2, 7;
  7, 7;
  7, 3, 2, 1, 1, 2, 3, 7;
  12, 12;
  8, 3, 1, 2, 2, 1, 3, 8;
  8, 8, 8;
  8, 3, 2, 1, 1, 1, 1, 2, 3, 8;
  31;
  9, 3, 2, 1, 1, 1, 1, 2, 3, 9;
  ...
Illustration of the odd-indexed rows of triangle as the diagram of the symmetric representation of sigma which is also the top view of the stepped pyramid:
.
   n  A000203    A237270    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
   1     1   =      1      |_| | | | | | | | | | | | | | | |
   2     3   =      3      |_ _|_| | | | | | | | | | | | | |
   3     4   =    2 + 2    |_ _|  _|_| | | | | | | | | | | |
   4     7   =      7      |_ _ _|    _|_| | | | | | | | | |
   5     6   =    3 + 3    |_ _ _|  _|  _ _|_| | | | | | | |
   6    12   =     12      |_ _ _ _|  _| |  _ _|_| | | | | |
   7     8   =    4 + 4    |_ _ _ _| |_ _|_|    _ _|_| | | |
   8    15   =     15      |_ _ _ _ _|  _|     |  _ _ _|_| |
   9    13   =  5 + 3 + 5  |_ _ _ _ _| |      _|_| |  _ _ _|
  10    18   =    9 + 9    |_ _ _ _ _ _|  _ _|    _| |
  11    12   =    6 + 6    |_ _ _ _ _ _| |  _|  _|  _|
  12    28   =     28      |_ _ _ _ _ _ _| |_ _|  _|
  13    14   =    7 + 7    |_ _ _ _ _ _ _| |  _ _|
  14    24   =   12 + 12   |_ _ _ _ _ _ _ _| |
  15    24   =  8 + 8 + 8  |_ _ _ _ _ _ _ _| |
  16    31   =     31      |_ _ _ _ _ _ _ _ _|
  ...
The above diagram arises from a simpler diagram as shown below.
Illustration of the even-indexed rows of triangle as the diagram of the deployed front view of the corner of the stepped pyramid:
.
.                                 A237593
Level                               _ _
1                                 _|1|1|_
2                               _|2 _|_ 2|_
3                             _|2  |1|1|  2|_
4                           _|3   _|1|1|_   3|_
5                         _|3    |2 _|_ 2|    3|_
6                       _|4     _|1|1|1|1|_     4|_
7                     _|4      |2  |1|1|  2|      4|_
8                   _|5       _|2 _|1|1|_ 2|_       5|_
9                 _|5        |2  |2 _|_ 2|  2|        5|_
10              _|6         _|2  |1|1|1|1|  2|_         6|_
11            _|6          |3   _|1|1|1|1|_   3|          6|_
12          _|7           _|2  |2  |1|1|  2|  2|_           7|_
13        _|7            |3    |2 _|1|1|_ 2|    3|            7|_
14      _|8             _|3   _|1|2 _|_ 2|1|_   3|_             8|_
15    _|8              |3    |2  |1|1|1|1|  2|    3|              8|_
16   |9                |3    |2  |1|1|1|1|  2|    3|                9|
...
The number of horizontal line segments in the n-th level in each side of the diagram equals A001227(n), the number of odd divisors of n.
The number of horizontal line segments in the left side of the diagram plus the number of the horizontal line segment in the right side equals A054844(n).
The total number of vertical line segments in the n-th level of the diagram equals A131507(n).
The diagram represents the first 16 levels of the pyramid.
The diagram of the isosceles triangle and the diagram of the top view of the pyramid shows the connection between the partitions into consecutive parts and the sum of divisors function (see also A286000 and A286001). - _Omar E. Pol_, Aug 28 2018
The connection between the isosceles triangle and the stepped pyramid is due to the fact that this object can also be interpreted as a pop-up card. - _Omar E. Pol_, Nov 09 2022
		

Crossrefs

Famous sequences that are visible in the stepped pyramid:
Cf. A000040 (prime numbers)......., for the characteristic shape see A346871.
Cf. A000079 (powers of 2)........., for the characteristic shape see A346872.
Cf. A000203 (sum of divisors)....., total area of the terraces in the n-th level.
Cf. A000217 (triangular numbers).., for the characteristic shape see A346873.
Cf. A000225 (Mersenne numbers)...., for a visualization see A346874.
Cf. A000384 (hexagonal numbers)..., for the characteristic shape see A346875.
Cf. A000396 (perfect numbers)....., for the characteristic shape see A346876.
Cf. A000668 (Mersenne primes)....., for a visualization see A346876.
Cf. A001097 (twin primes)........., for a visualization see A346871.
Cf. A001227 (# of odd divisors)..., number of subparts in the n-th level.
Cf. A002378 (oblong numbers)......, for a visualization see A346873.
Cf. A008586 (multiples of 4)......, perimeters of the successive levels.
Cf. A008588 (multiples of 6)......, for the characteristic shape see A224613.
Cf. A013661 (zeta(2))............., (area of the horizontal faces)/(n^2), n -> oo.
Cf. A014105 (second hexagonals)..., for the characteristic shape see A346864.
Cf. A067742 (# of middle divisors), # cells in the main diagonal in n-th level.
Apart from zeta(2) other constants that are related to the stepped pyramid are A072691, A353908, A354238.

A008588 Nonnegative multiples of 6.

Original entry on oeis.org

0, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96, 102, 108, 114, 120, 126, 132, 138, 144, 150, 156, 162, 168, 174, 180, 186, 192, 198, 204, 210, 216, 222, 228, 234, 240, 246, 252, 258, 264, 270, 276, 282, 288, 294, 300, 306, 312, 318, 324, 330, 336, 342, 348
Offset: 0

Views

Author

Keywords

Comments

For n > 3, the number of squares on the infinite 3-column half-strip chessboard at <= n knight moves from any fixed point on the short edge.
Second differences of A000578. - Cecilia Rossiter (cecilia(AT)noticingnumbers.net), Dec 15 2004
A008615(a(n)) = n. - Reinhard Zumkeller, Feb 27 2008
A157176(a(n)) = A001018(n). - Reinhard Zumkeller, Feb 24 2009
These numbers can be written as the sum of four cubes (i.e., 6*n = (n+1)^3 + (n-1)^3 + (-n)^3 + (-n)^3). - Arkadiusz Wesolowski, Aug 09 2013
A122841(a(n)) > 0 for n > 0. - Reinhard Zumkeller, Nov 10 2013
Surface area of a cube with side sqrt(n). - Wesley Ivan Hurt, Aug 24 2014
a(n) is representable as a sum of three but not two consecutive nonnegative integers, e.g., 6 = 1 + 2 + 3, 12 = 3 + 4 + 5, 18 = 5 + 6 + 7, etc. (see A138591). - Martin Renner, Mar 14 2016 (Corrected by David A. Corneth, Aug 12 2016)
Numbers with three consecutive divisors: for some k, each of k, k+1, and k+2 divide n. - Charles R Greathouse IV, May 16 2016
Numbers k for which {phi(k),phi(2k),phi(3k)} is an arithmetic progression. - Ivan Neretin, Aug 12 2016

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 81.

Crossrefs

Essentially the same as A008458.
Cf. A044102 (subsequence).

Programs

Formula

From Vincenzo Librandi, Dec 24 2010: (Start)
a(n) = 6*n = 2*a(n-1) - a(n-2).
G.f.: 6*x/(1-x)^2. (End)
a(n) = Sum_{k>=0} A030308(n,k)*6*2^k. - Philippe Deléham, Oct 24 2011
a(n) = Sum_{k=2n-1..2n+1} k. - Wesley Ivan Hurt, Nov 22 2015
From Ilya Gutkovskiy, Aug 12 2016: (Start)
E.g.f.: 6*x*exp(x).
Convolution of A010722 and A057427.
Sum_{n>=1} (-1)^(n+1)/a(n) = log(2)/6 = A002162*A020793. (End)
a(n) = 6 * A001477(n). - David A. Corneth, Aug 12 2016

A016921 a(n) = 6*n + 1.

Original entry on oeis.org

1, 7, 13, 19, 25, 31, 37, 43, 49, 55, 61, 67, 73, 79, 85, 91, 97, 103, 109, 115, 121, 127, 133, 139, 145, 151, 157, 163, 169, 175, 181, 187, 193, 199, 205, 211, 217, 223, 229, 235, 241, 247, 253, 259, 265, 271, 277, 283, 289, 295, 301, 307, 313, 319, 325, 331
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0( 22 ).
Also solutions to 2^x + 3^x == 5 (mod 7). - Cino Hilliard, May 10 2003
Except for 1, exponents n > 1 such that x^n - x^2 - 1 is reducible. - N. J. A. Sloane, Jul 19 2005
Let M(n) be the n X n matrix m(i,j) = min(i,j); then the trace of M(n)^(-2) is a(n-1) = 6*n - 5. - Benoit Cloitre, Feb 09 2006
If Y is a 3-subset of an (2n+1)-set X then, for n >= 3, a(n-1) is the number of 3-subsets of X having at least two elements in common with Y. - Milan Janjic, Dec 16 2007
All composite terms belong to A269345 as shown in there. - Waldemar Puszkarz, Apr 13 2016
First differences of the number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 773", based on the 5-celled von Neumann neighborhood. - Robert Price, May 23 2016
For b(n) = A103221(n) one has b(a(n)-1) = b(a(n)+1) = b(a(n)+2) = b(a(n)+3) = b(a(n)+4) = n+1 but b(a(n)) = n. So-called "dips" in A103221. See the Avner and Gross remark on p. 178. - Wolfdieter Lang, Sep 16 2016
A (n+1,n) pebbling move involves removing n + 1 pebbles from a vertex in a simple graph and placing n pebbles on an adjacent vertex. A two-player impartial (n+1,n) pebbling game involves two players alternating (n+1,n) pebbling moves. The first player unable to make a move loses. The sequence a(n) is also the minimum number of pebbles such that any assignment of those pebbles on a complete graph with 3 vertices is a next-player winning game in the two player impartial (k+1,k) pebbling game. These games are represented by A347637(3,n). - Joe Miller, Oct 18 2021
Interleaving of A017533 and A017605. - Leo Tavares, Nov 16 2021

Examples

			From _Ilya Gutkovskiy_, Apr 15 2016: (Start)
Illustration of initial terms:
                      o
                    o o o
              o     o o o
            o o o   o o o
      o     o o o   o o o
    o o o   o o o   o o o
o   o o o   o o o   o o o
n=0  n=1     n=2     n=3
(End)
		

References

  • Avner Ash and Robert Gross, Summing it up, Princeton University Press, 2016, p. 178.

Crossrefs

Cf. A093563 ((6, 1) Pascal, column m=1).
a(n) = A007310(2*(n+1)); complement of A016969 with respect to A007310.
Cf. A287326 (second column).

Programs

Formula

a(n) = 6*n + 1, n >= 0 (see the name).
G.f.: (1+5*x)/(1-x)^2.
A008615(a(n)) = n. - Reinhard Zumkeller, Feb 27 2008
A157176(a(n)) = A013730(n). - Reinhard Zumkeller, Feb 24 2009
a(n) = 4*(3*n-1) - a(n-1) (with a(0)=1). - Vincenzo Librandi, Nov 20 2010
E.g.f.: (1 + 6*x)*exp(x). - G. C. Greubel, Sep 18 2019
a(n) = A003215(n) - 6*A000217(n-1). See Hexagonal Lines illustration. - Leo Tavares, Sep 10 2021
From Leo Tavares, Oct 27 2021: (Start)
a(n) = 6*A001477(n-1) + 7
a(n) = A016813(n) + 2*A001477(n)
a(n) = A017605(n-1) + A008588(n-1)
a(n) = A016933(n) - 1
a(n) = A008588(n) + 1. (End)
Sum_{n>=0} (-1)^n/a(n) = Pi/6 + sqrt(3)*arccoth(sqrt(3))/3. - Amiram Eldar, Dec 10 2021

A083221 Sieve of Eratosthenes arranged as an array and read by antidiagonals as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ...

Original entry on oeis.org

2, 4, 3, 6, 9, 5, 8, 15, 25, 7, 10, 21, 35, 49, 11, 12, 27, 55, 77, 121, 13, 14, 33, 65, 91, 143, 169, 17, 16, 39, 85, 119, 187, 221, 289, 19, 18, 45, 95, 133, 209, 247, 323, 361, 23, 20, 51, 115, 161, 253, 299, 391, 437, 529, 29, 22, 57, 125, 203, 319, 377, 493, 551, 667
Offset: 2

Views

Author

Yasutoshi Kohmoto, Jun 05 2003

Keywords

Comments

This is permutation of natural numbers larger than 1.
From Antti Karttunen, Dec 19 2014: (Start)
If we assume here that a(1) = 1 (but which is not explicitly included because outside of the array), then A252460 gives an inverse permutation. See also A249741.
For navigating in this array:
A055396(n) gives the row number of row where n occurs, and A078898(n) gives its column number, both starting their indexing from 1.
A250469(n) gives the number immediately below n, and when n is an odd number >= 3, A250470(n) gives the number immediately above n. If n is a composite, A249744(n) gives the number immediately left of n.
First cube of each row, which is {the initial prime of the row}^3 and also the first number neither a prime or semiprime, occurs on row n at position A250474(n).
(End)
The n-th row contains the numbers whose least prime factor is the n-th prime: A020639(T(n,k)) = A000040(n). - Franklin T. Adams-Watters, Aug 07 2015

Examples

			The top left corner of the array:
   2,   4,   6,    8,   10,   12,   14,   16,   18,   20,   22,   24,   26
   3,   9,  15,   21,   27,   33,   39,   45,   51,   57,   63,   69,   75
   5,  25,  35,   55,   65,   85,   95,  115,  125,  145,  155,  175,  185
   7,  49,  77,   91,  119,  133,  161,  203,  217,  259,  287,  301,  329
  11, 121, 143,  187,  209,  253,  319,  341,  407,  451,  473,  517,  583
  13, 169, 221,  247,  299,  377,  403,  481,  533,  559,  611,  689,  767
  17, 289, 323,  391,  493,  527,  629,  697,  731,  799,  901, 1003, 1037
  19, 361, 437,  551,  589,  703,  779,  817,  893, 1007, 1121, 1159, 1273
  23, 529, 667,  713,  851,  943,  989, 1081, 1219, 1357, 1403, 1541, 1633
  29, 841, 899, 1073, 1189, 1247, 1363, 1537, 1711, 1769, 1943, 2059, 2117
  ...
		

Crossrefs

Transpose of A083140.
One more than A249741.
Inverse permutation: A252460.
Column 1: A000040, Column 2: A001248.
Row 1: A005843, Row 2: A016945, Row 3: A084967, Row 4: A084968, Row 5: A084969, Row 6: A084970.
Main diagonal: A083141.
First semiprime in each column occurs at A251717; A251718 & A251719 with additional criteria. A251724 gives the corresponding semiprimes for the latter. See also A251728.
Permutations based on mapping numbers between this array and A246278: A249817, A249818, A250244, A250245, A250247, A250249. See also: A249811, A249814, A249815.
Also used in the definition of the following arrays of permutations: A249821, A251721, A251722.

Programs

  • Mathematica
    lim = 11; a = Table[Take[Prime[n] Select[Range[lim^2], GCD[# Prime@ n, Product[Prime@ i, {i, 1, n - 1}]] == 1 &], lim], {n, lim}]; Flatten[Table[a[[i, n - i + 1]], {n, lim}, {i, n}]] (* Michael De Vlieger, Jan 04 2016, after Yasutoshi Kohmoto at A083140 *)

Extensions

More terms from Hugo Pfoertner, Jun 13 2003

A016969 a(n) = 6*n + 5.

Original entry on oeis.org

5, 11, 17, 23, 29, 35, 41, 47, 53, 59, 65, 71, 77, 83, 89, 95, 101, 107, 113, 119, 125, 131, 137, 143, 149, 155, 161, 167, 173, 179, 185, 191, 197, 203, 209, 215, 221, 227, 233, 239, 245, 251, 257, 263, 269, 275, 281, 287, 293, 299, 305, 311, 317, 323, 329, 335
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0(18).
Exponents e such that x^e + x - 1 is reducible.
First differences of A141631. - Paul Curtz, Sep 12 2008
a(n-1), n >= 1, appears as first column in the triangle A239127 related to the Collatz problem. - Wolfdieter Lang, Mar 14 2014
Odd unlucky numbers in A050505. - Fred Daniel Kline, Feb 25 2017
Intersection of A005408 and A016789. - Bruno Berselli, Apr 26 2018
Numbers that are not divisible by their digital root in base 4. - Amiram Eldar, Nov 24 2022

Crossrefs

Cf. A050505 (unlucky numbers).
Cf. A000217.

Programs

Formula

a(n) = A003415(A003415(A125200(n+1)))/2. - Reinhard Zumkeller, Nov 24 2006
A008615(a(n)) = n+1. - Reinhard Zumkeller, Feb 27 2008
a(n) = A007310(2*n+1); complement of A016921 with respect to A007310. - Reinhard Zumkeller, Oct 02 2008
From Klaus Brockhaus, Jan 04 2009: (Start)
G.f.: (5+x)/(1-x)^2.
a(0) = 5; for n > 0, a(n) = a(n-1)+6. (End)
a(n) = A016921(n)+4 = A016933(n)+3 = A016945(n)+2 = A016957(n)+1. - Klaus Brockhaus, Jan 04 2009
a(n) = floor((12n-1)/2) with offset 1..a(1)=5. - Gary Detlefs, Mar 07 2010
a(n) = 4*(3*n+1) - a(n-1) (with a(0) = 5). - Vincenzo Librandi, Nov 20 2010
a(n) = floor(1/(1/sin(1/n) - n)). - Clark Kimberling, Feb 19 2010
a(n) = 3*Sum_{k = 0..n} binomial(6*n+5, 6*k+2)*Bernoulli(6*k+2). - Michel Marcus, Jan 11 2016
a(n) = A049452(n+1) / (n+1). - Torlach Rush, Nov 23 2018
a(n) = 2*A000217(n+2) - 1 - 2*A000217(n-1). See Twin Triangular Frames illustration. - Leo Tavares, Aug 25 2021
Sum_{n>=0} (-1)^n/a(n) = Pi/6 - sqrt(3)*arccoth(sqrt(3))/3. - Amiram Eldar, Dec 10 2021
E.g.f.: exp(x)*(5 + 6*x). - Stefano Spezia, Feb 14 2025

Extensions

More terms from Klaus Brockhaus, Jan 04 2009

A016957 a(n) = 6*n + 4.

Original entry on oeis.org

4, 10, 16, 22, 28, 34, 40, 46, 52, 58, 64, 70, 76, 82, 88, 94, 100, 106, 112, 118, 124, 130, 136, 142, 148, 154, 160, 166, 172, 178, 184, 190, 196, 202, 208, 214, 220, 226, 232, 238, 244, 250, 256, 262, 268, 274, 280, 286, 292, 298, 304, 310, 316, 322, 328
Offset: 0

Views

Author

Keywords

Comments

Number of 2 X n binary matrices avoiding simultaneously the right-angled numbered polyomino patterns (ranpp) (00;1), (01,1) and (11;0). An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i1 < i2, j1 < j2 and these elements are in the same relative order as those in the triple (x,y,z). In general, the number of m X n 0-1 matrices in question is given by (n+2)*2^(m-1) + 2*m*(n-1) - 2 for m > 1 and n > 1. - Sergey Kitaev, Nov 12 2004
If Y is a 4-subset of an n-set X then, for n >= 4, a(n-4) is the number of 3-subsets of X having at least two elements in common with Y. - Milan Janjic, Dec 08 2007
4th transversal numbers (or 4-transversal numbers): Numbers of the 4th column of positive numbers in the square array of nonnegative and polygonal numbers A139600. Also, numbers of the 4th column in the square array A057145. - Omar E. Pol, May 02 2008
a(n) is the maximum number such that there exists an edge coloring of the complete graph with a(n) vertices using n colors and every subgraph whose edges are of the same color (subgraph induced by edge color) is planar. - Srikanth K S, Dec 18 2010
Also numbers having two antecedents in the Collatz problem: 12*n+8 and 2*n+1 (respectively A017617(n) and A005408(n)). - Michel Lagneau, Dec 28 2012
a(n) = 6n+4 has three undirected edges e1 = (3n+2, 6n+4), e2 = (6n+4, 12n+8) and e3 = (2n+1, 6n+4) in the Collatz graph of A006370. - Heinz Ebert, Mar 16 2021
Conjecture: this sequence contains some but not all, even numbers with odd abundance A088827. They appear in this sequence at indices A186424(n) - 1. - John Tyler Rascoe, Jul 09 2022

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189. - From N. J. A. Sloane, Dec 01 2012

Crossrefs

Programs

Formula

A008615(a(n)) = n+1. - Reinhard Zumkeller, Feb 27 2008
a(n) = A016789(n)*2. - Omar E. Pol, May 02 2008
A157176(a(n)) = A067412(n+1). - Reinhard Zumkeller, Feb 24 2009
a(n) = sqrt(A016958(n)). - Zerinvary Lajos, Jun 30 2009
a(n) = 2*(6*n+1) - a(n-1) (with a(0)=4). - Vincenzo Librandi, Nov 20 2010
a(n) = floor((sqrt(36*n^2 - 36*n + 1) + 6*n + 1)/2). - Srikanth K S, Dec 18 2010
From Colin Barker, Jan 30 2012: (Start)
G.f.: 2*(2+x)/(1-2*x+x^2).
a(n) = 2*a(n-1) - a(n-2). (End)
A089911(2*a(n)) = 9. - Reinhard Zumkeller, Jul 05 2013
a(n) = 3 * A005408(n) + 1. - Fred Daniel Kline, Oct 24 2015
a(n) = A057145(n+2,4). - R. J. Mathar, Jul 28 2016
a(4*n+2) = 4 * a(n). - Zhandos Mambetaliyev, Sep 22 2018
Sum_{n>=0} (-1)^n/a(n) = sqrt(3)*Pi/18 - log(2)/6. - Amiram Eldar, Dec 10 2021
E.g.f.: 2*exp(x)*(2 + 3*x). - Stefano Spezia, May 29 2024

A250469 a(1) = 1; and for n > 1, a(n) = A078898(n)-th number k for which A055396(k) = A055396(n)+1, where A055396(n) is the index of smallest prime dividing n.

Original entry on oeis.org

1, 3, 5, 9, 7, 15, 11, 21, 25, 27, 13, 33, 17, 39, 35, 45, 19, 51, 23, 57, 55, 63, 29, 69, 49, 75, 65, 81, 31, 87, 37, 93, 85, 99, 77, 105, 41, 111, 95, 117, 43, 123, 47, 129, 115, 135, 53, 141, 121, 147, 125, 153, 59, 159, 91, 165, 145, 171, 61, 177, 67, 183, 155, 189, 119, 195, 71, 201, 175, 207, 73, 213, 79, 219, 185, 225, 143, 231, 83, 237, 205, 243, 89, 249, 133, 255
Offset: 1

Views

Author

Antti Karttunen, Dec 06 2014

Keywords

Comments

Permutation of odd numbers.
For n >= 2, a(n) = A078898(n)-th number k for which A055396(k) = A055396(n)+1. In other words, a(n) tells which number is located immediately below n in the sieve of Eratosthenes (see A083140, A083221) in the same column of the sieve that contains n.
A250471(n) = (a(n)+1)/2 is a permutation of natural numbers.
Coincides with A003961 in all terms which are primes. - M. F. Hasler, Sep 17 2016. Note: primes are a proper subset of A280693 which gives all n such that a(n) = A003961(n). - Antti Karttunen, Mar 08 2017

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := If[PrimeQ[n], NextPrime[n], m1 = p1 = FactorInteger[n][[ 1, 1]]; For[k1 = 1, m1 <= n, m1 += p1; If[m1 == n, Break[]]; If[ FactorInteger[m1][[1, 1]] == p1, k1++]]; m2 = p2 = NextPrime[p1]; For[k2 = 1, True, m2 += p2, If[FactorInteger[m2][[1, 1]] == p2, k2++]; If[k1+2 == k2, Return[m2]]]]; Array[a, 100] (* Jean-François Alcover, Mar 08 2016 *)
    g[n_] := If[n == 1, 0, PrimePi@ FactorInteger[n][[1, 1]]]; Function[s, MapIndexed[Lookup[s, g[First@ #2] + 1][[#1]] - Boole[First@ #2 == 1] &, #] &@ Map[Position[Lookup[s, g@#], #][[1, 1]] &, Range@ 120]]@ PositionIndex@ Array[g, 10^4] (* Michael De Vlieger, Mar 08 2017, Version 10 *)

Formula

a(1) = 1, a(n) = A083221(A055396(n)+1, A078898(n)).
a(n) = A249817(A003961(A249818(n))).
Other identities. For all n >= 1:
A250470(a(n)) = A268674(a(n)) = n. [A250470 and A268674 provide left inverses for this function.]
a(2n) = A016945(n-1). [Maps even numbers to the numbers of form 6n+3, in monotone order.]
a(A016945(n-1)) = A084967(n). [Which themselves are mapped to the terms of A084967, etc. Cf. the Example section of A083140.]
a(A000040(n)) = A000040(n+1). [Each prime is mapped to the next prime.]
For all n >= 2, A055396(a(n)) = A055396(n)+1. [A more general rule.]
A046523(a(n)) = A283465(n). - Antti Karttunen, Mar 08 2017
Showing 1-10 of 99 results. Next