cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A115754 Decimal expansion of sqrt(3/2).

Original entry on oeis.org

1, 2, 2, 4, 7, 4, 4, 8, 7, 1, 3, 9, 1, 5, 8, 9, 0, 4, 9, 0, 9, 8, 6, 4, 2, 0, 3, 7, 3, 5, 2, 9, 4, 5, 6, 9, 5, 9, 8, 2, 9, 7, 3, 7, 4, 0, 3, 2, 8, 3, 3, 5, 0, 6, 4, 2, 1, 6, 3, 4, 6, 2, 8, 3, 6, 2, 5, 4, 8, 0, 1, 8, 8, 7, 2, 8, 6, 5, 7, 5, 1, 3, 2, 6, 9, 9, 2, 9, 7, 1, 6, 5, 5, 2, 3, 2, 0, 1, 1
Offset: 1

Views

Author

Eric Desbiaux, Jul 30 2008

Keywords

Comments

Coordinate of a control point for a degree-5 integration formula for 7 points over the unit circle. [Stroud & Secrest]
Also real and imaginary part of sqrt(-3i). - Alonso del Arte, Dec 11 2012
Area of the quadrilateral obtained when slicing a unit cube with a plane passing through opposite vertices and the middle of opposite edges. See CNRS link. - Michel Marcus, Mar 26 2016
Positive zero of the Hermite polynomial of degree 3. - A.H.M. Smeets, Jun 02 2025

Examples

			1.2247448713915890490986420373529456959829737403283350642163...
		

Crossrefs

Cf. A382713 (continued fraction), A068388 (Engel expansion).
Cf. A010464 (double), A187110 (half), A157697 (reciprocal).

Programs

  • Mathematica
    RealDigits[Sqrt[3/2], 10, 105][[1]] (* Alonso del Arte, Dec 11 2012 *)

Formula

Equals 2*A187110.
Equals Sum_{k>=0} binomial(1/2, k)/2^k. - Bruno Berselli, Sep 11 2015
From Amiram Eldar, Aug 02 2020: (Start)
Equals Product_{k>=0} (1 + (-1)^k/(6*k + 3)).
Equals Sum_{k>=0} binomial(2*k,k)/12^k.
Equals 1 + Sum_{k>=1} (2*k - 1)!!/((2*k)!! * 3^k). (End)
Equals A010464/2. - R. J. Mathar, Feb 23 2021

A142238 Numerators of continued fraction convergents to sqrt(3/2).

Original entry on oeis.org

1, 5, 11, 49, 109, 485, 1079, 4801, 10681, 47525, 105731, 470449, 1046629, 4656965, 10360559, 46099201, 102558961, 456335045, 1015229051, 4517251249, 10049731549, 44716177445, 99482086439, 442644523201, 984771132841, 4381729054565, 9748229241971
Offset: 0

Views

Author

N. J. A. Sloane, Oct 05 2008, following a suggestion from Rob Miller (rmiller(AT)AmtechSoftware.net)

Keywords

Comments

From Charlie Marion, Jan 07 2009: (Start)
In general, denominators, a(k,n) and numerators, b(k,n), of continued
fraction convergents to sqrt((k+1)/k) may be found as follows:
a(k,0) = 1, a(k,1) = 2k; for n>0, a(k,2n) = 2*a(k,2n-1)+a(k,2n-2)
and a(k,2n+1)=(2k)*a(k,2n)+a(k,2n-1);
b(k,0) = 1, b(k,1) = 2k+1; for n>0, b(k,2n) = 2*b(k,2n-1)+b(k,2n-2)
and b(k,2n+1)=(2k)*b(k,2n)+b(k,2n-1).
For example, the convergents to sqrt(3/2) start 1/1, 5/4, 11/9,
49/40, 109/89.
In general, if a(k,n) and b(k,n) are the denominators and numerators,
respectively, of continued fraction convergents to sqrt((k+1)/k)
as defined above, then
k*a(k,2n)^2-a(k,2n-1)*a(k,2n+1)=k=k*a(k,2n-2)*a(k,2n)-a(k,2n-1)^2 and
b(k,2n-1)*b(k,2n+1)-k*b(k,2n)^2=k+1=b(k,2n-1)^2-k*b(k,2n-2)*b(k,2n);
for example, if k=2 and n=3, then b(2,n)=a(n) and
2*a(2,6)^2-a(2,5)*a(2,7)=2*881^2-396*3920=2;
2*a(2,4)*a(2,6)-a(2,5)^2=2*89*881-396^2=2;
b(2,5)*b(2,7)-2*b(2,6)^2=485*4801-2*1079^2=3;
b(2,5)^2-2*b(2,4)*b(2,6)=485^2-2*109*1079=3.

Examples

			The initial convergents are 1, 5/4, 11/9, 49/40, 109/89, 485/396, 1079/881, 4801/3920, 10681/8721, 47525/38804, 105731/86329, ...
		

Crossrefs

Programs

  • Maple
    with(numtheory): cf := cfrac (sqrt(3)/sqrt(2),100): [seq(nthnumer(cf,i), i=0..50)]; [seq(nthdenom(cf,i), i=0..50)]; [seq(nthconver(cf,i), i=0..50)];
  • Mathematica
    Numerator[Convergents[Sqrt[3/2], 30]] (* Bruno Berselli, Nov 11 2013 *)
    LinearRecurrence[{0,10,0,-1},{1,5,11,49},30] (* Harvey P. Dale, Dec 30 2017 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,0,10,0]^n*[1;5;11;49])[1,1] \\ Charles R Greathouse IV, Jun 21 2015

Formula

G.f.'s for numerators and denominators are -(1+5*x+x^2-x^3)/(-1-x^4+10*x^2) and -(1+4*x-x^2)/(-1-x^4+10*x^2).
a(2n) = A041006(2n)/2 = A054320(n), a(2n-1) = A041006(2n-1) = A041038(2n-1) = A001079(n). - M. F. Hasler, Feb 14 2009

A142239 Denominators of continued fraction convergents to sqrt(3/2).

Original entry on oeis.org

1, 4, 9, 40, 89, 396, 881, 3920, 8721, 38804, 86329, 384120, 854569, 3802396, 8459361, 37639840, 83739041, 372596004, 828931049, 3688320200, 8205571449, 36510605996, 81226783441, 361417739760, 804062262961, 3577666791604, 7959395846169, 35415250176280
Offset: 0

Views

Author

N. J. A. Sloane, Oct 05 2008, following a suggestion from Rob Miller (rmiller(AT)AmtechSoftware.net)

Keywords

Comments

sqrt(3/2) = 1.224744871... = 2/2 + 2/9 + 2/(9*89) + 2/(89*881) + 2/(881*8721) + 2/(8721*86329) + ... - Gary W. Adamson, Oct 08 2008
From Charlie Marion, Jan 07 2009: (Start)
In general, denominators, a(k,n) and numerators, b(k,n), of continued fraction convergents to sqrt((k+1)/k) may be found as follows:
a(k,0) = 1, a(k,1) = 2k;
for n > 0, a(k,2n) = 2*a(k,2n-1)+a(k,2n-2) and a(k,2n+1)=(2k)*a(k,2n)+a(k,2n-1);
b(k,0) = 1, b(k,1) = 2k+1;
for n > 0, b(k,2n) = 2*b(k,2n-1)+b(k,2n-2) and b(k,2n+1)=(2k)*b(k,2n)+b(k,2n-1).
For example, the convergents to sqrt(3/2) start 1/1, 5/4, 11/9, 49/40, 109/89.
In general, if a(k,n) and b(k,n) are the denominators and numerators, respectively, of continued fraction convergents to sqrt((k+1)/k) as defined above, then
k*a(k,2n)^2 - a(k,2n-1)*a(k,2n+1) = k = k*a(k,2n-2)*a(k,2n) - a(k,2n-1)^2 and
b(k,2n-1)*b(k,2n+1) - k*b(k,2n)^2 = k+1 = b(k,2n-1)^2 - k*b(k,2n-2)*b(k,2n);
for example, if k=2 and n=3, then a(2,n)=a(n) and
2*a(2,6)^2 - a(2,5)*a(2,7) = 2*881^2 - 396*3920 = 2;
2*a(2,4)*a(2,6) - a(2,5)^2 = 2*89*881 - 396^2 = 2;
b(2,5)*b(2,7) - 2*b(2,6)^2 = 485*4801 - 2*1079^2 = 3;
b(2,5)^2 - 2*b(2,4)*b(2,6) = 485^2 - 2*109*1079 = 3.
(End)
For n > 0, a(n) equals the permanent of the n X n tridiagonal matrix with the main diagonal alternating sequence [4, 2, 4, 2, 4, ...] and 1's along the superdiagonal and the subdiagonal. - Rogério Serôdio, Apr 01 2018

Examples

			The initial convergents are 1, 5/4, 11/9, 49/40, 109/89, 485/396, 1079/881, 4801/3920, 10681/8721, 47525/38804, 105731/86329, ...
		

Crossrefs

Programs

  • Magma
    I:=[1,4,9,40]; [n le 4 select I[n] else 10*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Feb 01 2014
  • Maple
    with(numtheory): cf := cfrac (sqrt(3)/sqrt(2),100): [seq(nthnumer(cf,i), i=0..50)]; [seq(nthdenom(cf,i), i=0..50)]; [seq(nthconver(cf,i), i=0..50)];
  • Mathematica
    Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[3/2], n]]], {n, 1, 50}] (* Vladimir Joseph Stephan Orlovsky, Jun 23 2011 *)
    Denominator[Convergents[Sqrt[3/2], 30]] (* Bruno Berselli, Nov 11 2013 *)

Formula

G.f.'s for numerators and denominators are -(1+5*x+x^2-x^3)/(-1-x^4+10*x^2) and -(1+4*x-x^2)/(-1-x^4+10*x^2).
a(n) = 10*a(n-2) - a(n-4) for n > 3. - Vincenzo Librandi, Feb 01 2014
From: Rogério Serôdio, Apr 02 2018: (Start)
Recurrence formula: a(n) = (3-(-1)^n)*a(n-1) + a(n-2), a(0) = 1, a(1) = 4;
Some properties:
(1) a(n)^2 - a(n-2)^2 = (3-(-1)^n)*a(2*n-1), for n > 1;
(2) a(2*n+1) = a(n)*(a(n+1) + a(n-1)), for n > 0;
(3) a(2*n) = A041007(2*n);
(4) a(2*n+1) = 2*A041007(2*n+1). (End)

A068388 Engel expansion of sqrt(3/2).

Original entry on oeis.org

1, 5, 9, 9, 47, 54, 171, 867, 3056, 28687, 133134, 542005, 563497, 1046686, 1955619, 2057281, 42760619, 661780137, 1109113993, 6460565976, 8523453296, 34406061218, 64402180149, 1607033374515, 10943963720662, 124655149151970
Offset: 1

Views

Author

Benoit Cloitre, Mar 03 2002

Keywords

Crossrefs

Programs

  • PARI
    print1(1, ", "); s=(3/2)^(1/2); for(i=0,30,s=s*ceil(1/s)-1; print1(ceil(1/s),", "));
Showing 1-4 of 4 results.