A115977 Expansion of elliptic modular function lambda in powers of the nome q.
16, -128, 704, -3072, 11488, -38400, 117632, -335872, 904784, -2320128, 5702208, -13504512, 30952544, -68901888, 149403264, -316342272, 655445792, -1331327616, 2655115712, -5206288384, 10049485312, -19115905536, 35867019904, -66437873664
Offset: 1
Keywords
Examples
G.f. = 16*q - 128*q^2 + 704*q^3 - 3072*q^4 + 11488*q^5 - 38400*q^6 + 117632*q^7 - ...
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math.Series 55, Tenth Printing, 1972, p. 591.
- J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 121.
- A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, p. 23, eq. (37).
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000 (terms 1..1000 from G. C. Greubel)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- A. Dieckmann, Collection of Infinite Products and Series
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
- Eric Weisstein's World of Mathematics, Elliptic Lambda Function
- Wolfram Research Basic Algebraic Identities Relations involving squares, 1st formula
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ InverseEllipticNomeQ @ x, {x, 0, n}]; a[ n_] := If[ n < 0, 0, SeriesCoefficient[ ModularLambda[ Log[q] / (Pi I)], {q, 0, n}]]; a[ n_] := SeriesCoefficient[ (EllipticTheta[ 2, 0, q] / EllipticTheta[ 3, 0, q])^4, {q, 0, n}]; a[ n_] := SeriesCoefficient[ 1/16 (EllipticTheta[ 2, 0, q] / EllipticTheta[ 3, 0, q^2])^8, {q, 0, n}]; (* Michael Somos, May 26 2016 *)
-
PARI
{a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); 16 * polcoeff( (eta(x + A) * eta(x^4 + A)^2 / eta(x^2 + A)^3)^8, n))};
Formula
Expansion of Jacobi elliptic parameter m = k^2 = (theta_2(q) / theta_3(q))^4 in powers of the nome q.
Expansion of 16 * q * (psi(q^2) / phi(q))^4 = 16 * q * (psi(q^2) / psi(q))^8 = 16 * q * (psi(q) / phi(q))^8 = 16 * q * (psi(-q) / phi(-q^2))^8 = 16 * q / (chi(q) * chi(-q^2))^8 = 16 * q * (f(-q^4) / f(q))^8 in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions.
Expansion of 16 * (eta(q) * eta(q^4)^2 / eta(q^2)^3)^8 in powers of q.
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u^2 * (1 - v)^2 - 16 * v * (1 - u).
lambda( -1 / tau ) = 1 - lambda( tau ) (see A128692).
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = g(t) where q = exp(2 Pi i t) and g() is the g.f. for A128692.
G.f.: 16 * q * (Product_{k>0} (1 + q^(2*k)) / (1 + q^(2*k - 1)))^8.
a(n) = -(-1)^n * A132136(n). - Michael Somos, Jun 03 2015
Empirical: Sum_{n>=1}(exp(-2*Pi)^n*a(n)) = 17 - 12*sqrt(2). - Simon Plouffe, Feb 20 2011
a(n) ~ -(-1)^n * exp(2*Pi*sqrt(n)) / (32 * n^(3/4)). - Vaclav Kotesovec, Apr 06 2018
The g.f. A(q) = 16*q - 128*q^2 + 704*q^3 - 3072*q^4 + ... satisfies A(q) + A(-q) = A(q)*A(-q). - Peter Bala, Sep 26 2023
Comments