cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A116690 a(n) = C(n,8) + C(n,7) + C(n,6) + C(n,5) + C(n,4) + C(n,3) + C(n,2) + C(n,1).

Original entry on oeis.org

0, 1, 3, 7, 15, 31, 63, 127, 255, 510, 1012, 1980, 3796, 7098, 12910, 22818, 39202, 65535, 106761, 169765, 263949, 401929, 600369, 880969, 1271625, 1807780, 2533986, 3505698, 4791322, 6474540, 8656936, 11460948, 15033172, 19548045
Offset: 0

Views

Author

Jonathan Vos Post, Mar 15 2006

Keywords

Programs

  • Magma
    [n*(n+1)*(25584 - 9604*n + 5264*n^2 - 1295*n^3 + 231*n^4 - 21*n^5 + n^6 ) /40320: n in [0..30]]; // G. C. Greubel, Nov 25 2017
  • Maple
    seq(sum(binomial(n,k),k=1..8),n=0..33); # Zerinvary Lajos, Dec 14 2007
  • Mathematica
    Table[n*(n + 1)*(25584 - 9604*n + 5264*n^2 - 1295*n^3 + 231*n^4 - 21*n^5 + n^6)/40320, {n, 0, 50}] (* G. C. Greubel, Nov 25 2017 *)
    Table[Total[Binomial[n,Range[8]]],{n,0,40}] (* Harvey P. Dale, Aug 14 2023 *)
  • PARI
    for(n=0,30, print1(n*(n+1)*(25584 - 9604*n + 5264*n^2 - 1295*n^3 + 231*n^4 - 21*n^5 + n^6 ) /40320, ", ")) \\ G. C. Greubel, Nov 25 2017
    
  • Sage
    [binomial(n,2)+binomial(n,4)+binomial(n,6)+binomial(n,8) for n in range(1, 35)] # Zerinvary Lajos, May 17 2009
    
  • Sage
    [binomial(n,2)+binomial(n,4)+binomial(n,6)+binomial(n,8)+binomial(n,1)+binomial(n,3)+binomial(n,5)+binomial(n,7)for n in range(0, 34)] # Zerinvary Lajos, May 17 2009
    

Formula

a(n) = A000581(n) + A000580(n) + A000579(n) + A000389(n) + A000332(n) + A000292(n) + A000217(n) + n. a(n) = A000581(n) + A116082(n).
G.f. ( -x*(2*x^2 - 2*x + 1)*(2*x^4 - 4*x^3 + 6*x^2 - 4*x + 1) ) / (x-1)^9. - R. J. Mathar, Oct 21 2011
a(n) = n*(n+1)*(25584 - 9604*n + 5264*n^2 - 1295*n^3 + 231*n^4 - 21*n^5 + n^6)/40320. - G. C. Greubel, Nov 25 2017
Showing 1-1 of 1 results.