cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116404 Expansion of (1-x)/((1-x)^2 - x^2*(1+x)^2).

Original entry on oeis.org

1, 1, 2, 6, 15, 35, 84, 204, 493, 1189, 2870, 6930, 16731, 40391, 97512, 235416, 568345, 1372105, 3312554, 7997214, 19306983, 46611179, 112529340, 271669860, 655869061, 1583407981, 3822685022, 9228778026, 22280241075, 53789260175
Offset: 0

Views

Author

Paul Barry, Feb 07 2006

Keywords

Comments

Diagonal sums of number triangle A114123.
Binomial transform of A114122.
Congruent to 1,1,0,0,1,1,... modulo 2.

Crossrefs

Programs

  • Magma
    I:=[1,1,2,6]; [n le 4 select I[n] else 2*Self(n-1)+2*Self(n-3)+Self(n-4): n in [1..36]]; // Vincenzo Librandi, Aug 19 2017
    
  • Mathematica
    LinearRecurrence[{2,0,2,1}, {1,1,2,6}, 35] (* Emanuele Munarini, Apr 27 2017 *)
    CoefficientList[Series[(1-x)/((1-x)^2 -x^2(1+x)^2), {x, 0, 35}], x] (* Vincenzo Librandi, Aug 19 2017 *)
  • PARI
    Vec((1-x)/((1-x)^2-x^2*(1+x)^2) + O(x^40)) \\ Michel Marcus, Aug 19 2017
    
  • Sage
    def A116404(n): return sum( round( hypergeometric([-n+2*k, -2*k], [1], 2) ) for k in (0..n//2) )
    [A116404(n) for n in (0..35)] # G. C. Greubel, Nov 20 2021

Formula

G.f.: (1-x)/(1 - 2*x - 2*x^3 - x^4).
a(n) = 2*a(n-1) + 2*a(n-3) + a(n-4).
a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..n-k} C(2*k,n-2*k-j)*C(n-2*k,j)*2^(n-2*k-j).
2*a(n) = A056594(n) + A000129(n+1). - R. J. Mathar, Oct 25 2011
a(n) = Sum_{k=0..floor(n/2)} hypergeometric2F1([-2*k, -n+2*k], [1], 2). - G. C. Greubel, Nov 20 2021