cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A116414 Riordan array (1/((1-x)(1-3x)),x/((1-x)(1-3x))).

Original entry on oeis.org

1, 4, 1, 13, 8, 1, 40, 42, 12, 1, 121, 184, 87, 16, 1, 364, 731, 496, 148, 20, 1, 1093, 2736, 2454, 1040, 225, 24, 1, 3280, 9844, 11064, 6170, 1880, 318, 28, 1, 9841, 34448, 46738, 32624, 13015, 3080, 427, 32, 1, 29524, 118101, 188208, 158724, 79044, 24381, 4704
Offset: 0

Views

Author

Paul Barry, Feb 13 2006

Keywords

Comments

Row sums are A116415. Diagonal sums are A007070. First column is A003462(n+1). Product of A007318 and A116412.
Subtriangle of triangle given by (0, 4, -3/4, 3/4, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Jan 18 2012

Examples

			Triangle begins
    1;
    4,   1;
   13,   8,   1;
   40,  42,  12,   1;
  121, 184,  87,  16,  1;
  364, 731, 496, 148, 20, 1;
Triangle T(n,k), 0 <= k <= n, given by (0, 4, -3/4, 3/4, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, ...) begins:
  1;
  0,   1;
  0,   4,   1;
  0,  13,   8,   1;
  0,  40,  42,  12,   1;
  0, 121, 184,  87,  16,  1;
  0, 364, 731, 496, 148, 20, 1;
  ... - _Philippe Deléham_, Jan 18 2012
		

Crossrefs

Programs

  • Mathematica
    With[{n = 10}, DeleteCases[#, 0] & /@ Rest@ CoefficientList[Series[(1 - 4 x + 3 x^2)/(1 - 4 x + 3 x^2 - x y), {x, 0, n}, {y, 0, n}], {x, y}]] // Flatten (* Michael De Vlieger, Apr 25 2018 *)

Formula

Riordan array (1/(1-4x+3x^2), x/(1-4x+3x^2)); number triangle T(n,k) = Sum_{j=0..n} binomial(n-j,k)*binomial(k+j,j)*3^j.
T(n,k) = 4*T(n-1,k) + T(n-1,k-1) - 3*T(n-2,k), T(0,0) = T(1,1) = T(2,2) = 1, T(1,0) = T(2,0) = 0, T(2,1) = 4, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Oct 31 2013
G.f.: (1-4*x+3*x^2)/(1-4*x+3*x^2-x*y). - Philippe Deléham, Oct 31 2013
From Peter Bala, Oct 07 2019: (Start)
O.g.f.: 1/(1 - 4*x + 3*x^2 - x*y) = 1 + (4 + y)*x + (13 + 8*y + y^2)*x^2 + ....
Recurrence for row polynomials: R(n,y) = (4 + y)*R(n-1,y) - 3*R(n-2,y) with R(0,y) = 1 and R(1,y) = 4 + y.
The row reverse polynomial y^n*R(n,1/y) is equal to the numerator polynomial of the finite continued fraction 1 + y/(1 + 3*y/(1 + ... + y/(1 + 3*y/(1)))) (with 2*n partial numerators). Cf. A110441. (End)

A116413 Expansion of (1+x)/(1-2x-x^2-x^3).

Original entry on oeis.org

1, 3, 7, 18, 46, 117, 298, 759, 1933, 4923, 12538, 31932, 81325, 207120, 527497, 1343439, 3421495, 8713926, 22192786, 56520993, 143948698, 366611175, 933692041, 2377943955, 6056191126, 15424018248, 39282171577, 100044552528, 254795294881, 648917313867
Offset: 0

Views

Author

Paul Barry, Feb 13 2006

Keywords

Comments

Diagonal sums of number triangle A116412. A078058 is an alternating sign version.
4*a(n) is the number of ways to tile a strip of length n+2 with red and blue squares, blue dominos, and blue trominos, where the first two tiles must have total length <= 3. - Greg Dresden and Arnim Kuchhal, Aug 05 2024

Programs

  • Mathematica
    CoefficientList[Series[(1+x)/(1-2x-x^2-x^3),{x,0,50}],x] (* or *) LinearRecurrence[{2,1,1},{1,3,7},50] (* Vladimir Joseph Stephan Orlovsky, Jan 31 2012 *)

Formula

a(n) = 2a(n-1)+a(n-2)+a(n-3).
a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..n-k} C(k+1,j)*C(n-k-j,k)*2^(n-2k-j).

A239488 Expansion of 1/x-4/(-sqrt(x^2-10*x+1)-x+1)-3.

Original entry on oeis.org

6, 30, 186, 1290, 9582, 74550, 599730, 4948050, 41638614, 356007630, 3083837802, 27006251610, 238704231102, 2126733078630, 19079571337314, 172209370246050, 1562686251141030, 14248144422407550, 130467052593799962
Offset: 1

Views

Author

Vladimir Kruchinin, Mar 20 2014

Keywords

Crossrefs

Cf. A103210.

Programs

  • Maple
    ogf := 1/x-4/(-sqrt(x^2-10*x+1)-x+1)-3;
    series(ogf, x=0, 20): seq(coeff(%,x,n), n=0..19); # Peter Luschny, Mar 21 2014
  • Maxima
    a(n):=sum(2^i*binomial(n,n-i+1)*binomial(n+i-1,n-1),i,0,n+1)/n;

Formula

a(n) = sum(i = 0..n+1, 2^i*binomial(n,n-i+1)*binomial(n+i-1,n-1))/n.
a(n) = T(2*n,n-1)/n where T(n,k) is triangle A116412.
D-finite with recurrence: (n+1)*a(n) +5*(-2*n+1)*a(n-1) +(n-2)*a(n-2)=0. a(n) = 2*A103210(n). - R. J. Mathar, May 23 2014
Showing 1-3 of 3 results.