A116425 Decimal expansion of 2 + 2*cos(2*Pi/7).
3, 2, 4, 6, 9, 7, 9, 6, 0, 3, 7, 1, 7, 4, 6, 7, 0, 6, 1, 0, 5, 0, 0, 0, 9, 7, 6, 8, 0, 0, 8, 4, 7, 9, 6, 2, 1, 2, 6, 4, 5, 4, 9, 4, 6, 1, 7, 9, 2, 8, 0, 4, 2, 1, 0, 7, 3, 1, 0, 9, 8, 8, 7, 8, 1, 9, 3, 7, 0, 7, 3, 0, 4, 9, 1, 2, 9, 7, 4, 5, 6, 9, 1, 5, 1, 8, 8, 5, 0, 1, 4, 6, 5, 3, 1, 7, 0, 7, 4, 3, 3, 3, 4, 1, 1
Offset: 1
Examples
3.246979603717467061...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.25 Tutte-Beraha Constants, p. 417.
Links
- Jesús Salas and Alan D. Sokal, Transfer matrices and partition functions zeros for antiferromagnetic Potts models, arXiv:cond-mat/0004330 [cond-mat.stat-mech], 2000-2001, p. 64.
- Eric Weisstein's World of Mathematics, Logistic Map
- Eric Weisstein's World of Mathematics, Silver Constant
- Index entries for algebraic numbers, degree 3
Crossrefs
Programs
-
Mathematica
First@ RealDigits[N[2 + 2 Cos[2 Pi/7], 120]] (* Michael De Vlieger, Jan 13 2016 *)
-
PARI
2 + 2*cos(2*Pi/7) \\ Michel Marcus, Jan 13 2016
Formula
Equals (2*cos(Pi/7))^2 = (A160389)^2.
Equals 2 + i^(4/7) - i^(10/7). - Peter Luschny, Apr 04 2020
Let c = 2 + 2*cos(2*Pi/7). The linear fractional transformation z -> c - c/z has order 7, that is, z = c - c/(c - c/(c - c/(c - c/(c - c/(c - c/(c - c/z)))))). - Peter Bala, May 09 2024
Comments