cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116470 All distinct Fibonacci and Lucas numbers.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 8, 11, 13, 18, 21, 29, 34, 47, 55, 76, 89, 123, 144, 199, 233, 322, 377, 521, 610, 843, 987, 1364, 1597, 2207, 2584, 3571, 4181, 5778, 6765, 9349, 10946, 15127, 17711, 24476, 28657, 39603, 46368, 64079, 75025, 103682, 121393, 167761
Offset: 0

Views

Author

Alexander Adamchuk, Aug 13 2006

Keywords

Comments

See A115339 for an essentially identical sequence.

Crossrefs

Union of A000045 and A000032.
Cf. A288219 (even bisection).

Programs

  • Haskell
    import Data.List (transpose)
    a116470 n = a116470_list !! n
    a116470_list = 0 : 1 : 2 : concat
                   (transpose [drop 4 a000045_list, drop 3 a000032_list])
    -- Reinhard Zumkeller, Aug 03 2013
    
  • Maple
    FL := (n, a, b) -> hypergeom([a - n/2, b - n/2], [1 - n], -4):
    a := n -> `if`(n < 3, n, FL((n + 2 + 3*irem(n, 2))/2, irem(n, 2), 1/2)):
    seq(simplify(a(n)), n=0..52); # Peter Luschny, Sep 03 2019
  • Mathematica
    CoefficientList[Series[-x*(x^2 + x + 1)*(x^3 + x + 1)/(-1 + x^4 + x^2), {x, 0, 50}], x] (* G. C. Greubel, Dec 21 2017 *)
    With[{nn=50},Select[Union[Join[LucasL[Range[0,nn]],Fibonacci[Range[0,nn]]]],#<=200000&]] (* Harvey P. Dale, Jul 05 2019 *)
  • PARI
    my(x='x+O('x^50)); concat([0], Vec(-x*(x^2+x+1)*(x^3+x+1)/( -1+x^4 +x^2))) \\ G. C. Greubel, Dec 21 2017
    
  • PARI
    a(n)=if(n<6, n, if(n%2, fibonacci(n\2+3), fibonacci(n\2)+fibonacci(n\2+2))) \\ Charles R Greathouse IV, Oct 14 2021

Formula

a(0) = 0, a(1) = 1, a(2) = 2, a(3) = 3, a(4) = 4, a(5) = 5, a(6) = 7, a(n) = a(n-2) + a(n-4) for n>6.
a(2*n) = Lucas(n+1) = Fibonacci(n) + Fibonacci(n+2) for n>1.
a(2*n+1) = Fibonacci(n+3) for n>2.
G.f.: -x*(x^2+x+1)*(x^3+x+1)/(-1+x^4+x^2). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 12 2009
a(n) = FL((n + 2 + 3*(n mod 2))/2, n mod 2, 1/2) for n >= 3. Here FL(n, a, b) = hypergeom([a - n/2, b - n/2], [1 - n], -4). - Peter Luschny, Sep 03 2019