A116470 All distinct Fibonacci and Lucas numbers.
0, 1, 2, 3, 4, 5, 7, 8, 11, 13, 18, 21, 29, 34, 47, 55, 76, 89, 123, 144, 199, 233, 322, 377, 521, 610, 843, 987, 1364, 1597, 2207, 2584, 3571, 4181, 5778, 6765, 9349, 10946, 15127, 17711, 24476, 28657, 39603, 46368, 64079, 75025, 103682, 121393, 167761
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (0,1,0,1).
Programs
-
Haskell
import Data.List (transpose) a116470 n = a116470_list !! n a116470_list = 0 : 1 : 2 : concat (transpose [drop 4 a000045_list, drop 3 a000032_list]) -- Reinhard Zumkeller, Aug 03 2013
-
Maple
FL := (n, a, b) -> hypergeom([a - n/2, b - n/2], [1 - n], -4): a := n -> `if`(n < 3, n, FL((n + 2 + 3*irem(n, 2))/2, irem(n, 2), 1/2)): seq(simplify(a(n)), n=0..52); # Peter Luschny, Sep 03 2019
-
Mathematica
CoefficientList[Series[-x*(x^2 + x + 1)*(x^3 + x + 1)/(-1 + x^4 + x^2), {x, 0, 50}], x] (* G. C. Greubel, Dec 21 2017 *) With[{nn=50},Select[Union[Join[LucasL[Range[0,nn]],Fibonacci[Range[0,nn]]]],#<=200000&]] (* Harvey P. Dale, Jul 05 2019 *)
-
PARI
my(x='x+O('x^50)); concat([0], Vec(-x*(x^2+x+1)*(x^3+x+1)/( -1+x^4 +x^2))) \\ G. C. Greubel, Dec 21 2017
-
PARI
a(n)=if(n<6, n, if(n%2, fibonacci(n\2+3), fibonacci(n\2)+fibonacci(n\2+2))) \\ Charles R Greathouse IV, Oct 14 2021
Formula
a(0) = 0, a(1) = 1, a(2) = 2, a(3) = 3, a(4) = 4, a(5) = 5, a(6) = 7, a(n) = a(n-2) + a(n-4) for n>6.
a(2*n) = Lucas(n+1) = Fibonacci(n) + Fibonacci(n+2) for n>1.
a(2*n+1) = Fibonacci(n+3) for n>2.
G.f.: -x*(x^2+x+1)*(x^3+x+1)/(-1+x^4+x^2). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 12 2009
a(n) = FL((n + 2 + 3*(n mod 2))/2, n mod 2, 1/2) for n >= 3. Here FL(n, a, b) = hypergeom([a - n/2, b - n/2], [1 - n], -4). - Peter Luschny, Sep 03 2019
Comments